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Abstract 

The focus of this thesis is the observation and characterisation of supercontinuum 

generation within multimode microstructured optical fibre and the development of the 

techniques required to both create and measure the generated supercontinua. In addition, 

the nonlinear effects of light in silica are reviewed, and the experimental results from 

supercontinua generated with a low number of solitons add novel scientific weight to 

recent theories on dispersive wave and soliton interactions in microstructured optical 

fibre. 

The supercontinua generated in various hexagonal core and elliptical core 

microstructured optical fibres when pumped with femtosecond pulses sourced from a 

Ti:Sapphire laser system are observed. The electromagnetic mode excited within the 

core is selected by an offset to the incident beam position on the fibre end face through 

a precise coupling system under computer control. A novel experimental measurement 

technique was developed to simultaneously characterise the electromagnetic mode 

output of these fibres in spectral and spatial domains. 

This technique revealed previously unobserved complexity in the mode structure of the 

supercontinuum output from microstructured optical fibre. In the generated dispersive 

wave, it was found that the electromagnetic mode structure was orientated in a 

hexagonal higher order mode structure with each orientation producing a slightly varied 

wavelength of light. 

From this work, and by selectively coupling into higher order modes, it was discovered 

that the creation of a “sparse supercontinuum” with a low number of solitons was 

possible while still maintaining strong nonlinear effects. This work allowed 

experimental soliton and dispersive wave pairs matched in higher order modes to be 

compared to the recent theories on dispersive wave trapping and the group index 

matching between these light pulses. 

To aid in the understanding of this data the full vector solutions for the electromagnetic 

modes in all fibres used were simulated using finite element frequency domain analysis, 

providing both the mode field structure and the effective mode index and dispersion for 

all modes in each fibre. 
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A polarisation study was performed on the output of the higher order electromagnetic 

modes confirming the expected simulated vector modes and using the rotation direction 

of the field pattern with polarisation rotation to determine the specific mode generated. 

This thesis comprises significant work that expands the scientific knowledge in the 

fields of supercontinuum generation, nonlinear optics and higher order electromagnetic 

modes in microstructured optical fibres through both simulation and experimental 

measurement and analysis. 

  



 

vii 

 

Table of Contents 

Declaration ......................................................................................................................... i 

Acknowledgments ............................................................................................................ iii 

Abstract ............................................................................................................................. v 

Table of Contents ............................................................................................................ vii 

1 Introduction ................................................................................................................ 1 

1.1 Optical Fibre ....................................................................................................... 2 

1.1.1 Numerical Aperture ..................................................................................... 2 

1.1.2 Attenuation .................................................................................................. 3 

1.1.3 Refractive Index of Optical Fibre ............................................................... 4 

1.1.4 Electromagnetic Modes in Optical Fibre .................................................... 6 

1.2 Microstructured Optical Fibre .......................................................................... 12 

1.3 Nonlinear Optics ............................................................................................... 14 

1.3.1 Kerr Effect ................................................................................................. 16 

1.3.2 Self-Phase Modulation .............................................................................. 17 

1.3.3 Cross-Phase Modulation ........................................................................... 19 

1.3.4 Wave Mixing ............................................................................................. 22 

1.3.5 Solitons ...................................................................................................... 23 

1.3.6 Stimulated Raman Scattering .................................................................... 26 

1.4 Supercontinuum ................................................................................................ 28 

1.4.1 Discovery and History............................................................................... 28 

1.4.2 The Supercontinuum ................................................................................. 29 

1.4.3 Soliton Formation and Fission .................................................................. 30 

1.4.4 Soliton Self-Raman Shift .......................................................................... 30 

1.4.5 Dispersive Wave ....................................................................................... 31 

1.4.6 Gravity-like Trapping................................................................................ 33 

1.4.7 Four Wave Mixing .................................................................................... 36 



 

viii 

 

1.4.8 Numerical Simulation ............................................................................... 36 

1.5 Supercontinuum in Higher Order EM Modes .................................................. 37 

1.5.1 Initial Research ......................................................................................... 38 

1.5.2 Current Research ....................................................................................... 39 

1.5.3 The Scope of this Thesis ........................................................................... 44 

2 Experimental ............................................................................................................ 46 

2.1 Ultrafast Lasers................................................................................................. 46 

2.1.1 Titanium-Sapphire Laser........................................................................... 46 

2.1.2 Measurement and Characterisation of Ti:S Laser. .................................... 47 

2.2 Microstructured Optical Fibre .......................................................................... 49 

2.3 Optics................................................................................................................ 53 

2.3.1 Faraday Isolator......................................................................................... 53 

2.3.2 Beam Steering and Stabilisation ............................................................... 54 

2.3.3 Fibre Coupling System.............................................................................. 58 

2.3.4 Apparatus Configuration ........................................................................... 59 

2.3.5 Collimator and Mode Scanner .................................................................. 59 

2.3.6 Polariser and Screen .................................................................................. 61 

2.4 Spectrometers ................................................................................................... 62 

2.4.1 HR2000+ ................................................................................................... 62 

2.4.2 NIRQuest .................................................................................................. 62 

2.5 Processing ......................................................................................................... 64 

2.5.1 Radiometric Calibration ............................................................................ 64 

2.5.2 Data Restructure and Visualisation ........................................................... 65 

3 Modelling of Optical Modes in Microstructured Optical Fibres ............................. 67 

3.1 Multipole Method ............................................................................................. 67 

3.2 Finite Element Frequency Domain Method ..................................................... 68 

3.3 Curve Fitting..................................................................................................... 68 



 

ix 

 

3.4 Results .............................................................................................................. 69 

3.4.1 Thorlabs NL-2.8-850-02 ........................................................................... 69 

3.4.2 Thorlabs NL-2.0-745-02 ........................................................................... 74 

3.4.3 Thorlabs NL-3.0-850................................................................................. 77 

3.4.4 OFTC Spun High Birefringence Fibre ...................................................... 79 

4 Observation of Supercontinuum Generation in Higher Order Modes of 

Microstructured Optical Fibre. ........................................................................................ 83 

4.1 Overview .......................................................................................................... 83 

4.2 Results and Discussion ..................................................................................... 84 

4.3 Conclusions ...................................................................................................... 90 

5 The Sparse Supercontinuum. ................................................................................... 91 

5.1 Overview .......................................................................................................... 91 

5.2 Method and Reasoning ..................................................................................... 92 

5.3 Results and Discussion ..................................................................................... 93 

5.4 Conclusions ...................................................................................................... 97 

6 Polarisation Study .................................................................................................... 98 

6.1 Overview .......................................................................................................... 98 

6.2 Experimental and method ................................................................................. 98 

6.3 Results and discussion .................................................................................... 102 

6.4 Conclusions .................................................................................................... 106 

7 Conclusions and Further Work .............................................................................. 107 

8 References .............................................................................................................. 109 

9 Papers ..................................................................................................................... 112 

9.1 Supercontinuum Generation in Higher Order Modes of Photonic Crystal  

Fibre     ....................................................................................................................... 113 

9.2 Spatio-spectral Identification of Solitons Occupying Higher Order 

Electromagnetic Modes in Photonic Crystal Fibre .................................................... 119 



 

x 

 

9.3 Spatio-spectral Analysis of Supercontinuum Generation in Higher Order 

Electromagnetic Modes of Photonic Crystal Fiber ................................................... 123 

9.4 Low Order Solitons in Higher Order Electromagnetic Modes of Photonic 

Crystal Fibre .............................................................................................................. 129 

9.5 Higher-Order Electromagnetic Mode Solitons Illuminate Theory ................. 132 

9.6 Sparse Supercontinuum with Low Order Solitons in Higher Order 

Electromagnetic Modes ............................................................................................. 135 

10 Appendices ............................................................................................................ 139 

10.1 Taylor Series Expansion of Phase Constant. .................................................. 139 

10.2 Radiometric Calibration ................................................................................. 141 

10.3 Source Code for Programs ............................................................................. 142 

10.3.1 List of other Programs Witten ................................................................. 142 

10.3.2 Refraction of Fused Silica ....................................................................... 143 

10.3.3 Self-Phase Modulation Simulation ......................................................... 144 

10.3.4 Quadrant Detection Simulation ............................................................... 145 

 



 

1 

 

1 Introduction 

This field of study has seen a large increase in research over the past 15 years ever since 

the discovery of Microstructured Optical Fibre (MOF) supercontinuum generation by 

Ranka et al in 2000 [1]. Although, once discovered, the experimental generation of this 

type of supercontinuum was easily achieved, understanding the physical processes 

occurring proved more difficult as the broad continuum of light made isolation of the 

various nonlinear effects difficult [2]. The resulting research has pushed the boundaries 

of knowledge for fibre structure and novel waveguide manufacturing, as well as the 

nonlinear optical effects within these waveguides. This thesis adds to this area of 

knowledge by investigating the nonlinear effects and supercontinuum generation in 

multiple electromagnetic modes of these waveguides. 

This thesis adds the following to the body of knowledge on this subject. A new 

experimental method of characterising the spatial and spectral output of a MOF 

supercontinuum has been developed and the first observations of mode dependant 

wavelengths in the supercontinuum arising from this new approach are reported. The 

observation of the “sparse supercontinuum” arising from solitons of order N ≤ 5 and the 

analysis of results adds new experimental evidence supporting theories of dispersive 

wave and soliton interactions directly, where previous measurements only provided 

indirect support. Finally, a full exploration of the electromagnetic modes in hexagonal 

core MOF performed in simulation and experimentally validated, provides the definitive 

measure of low order electromagnetic mode propagation in MOFs.  

This chapter introduces the fields of nonlinear and ultra-fast optics and specifically 

supercontinuum generation in MOF. The topics of fibre waveguides; electromagnetic 

modes; nonlinear optics; solitons; and supercontinuum generation necessary to discuss 

the application are reviewed. 

At this point, it is also useful to define the following commonly used units and their 

relation. 

𝜔 is the angular frequency of an electromagnetic field. 

𝜆0 is the free space wavelength. The two are related through the speed of light. 
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Quantities are usually referenced with respect to their free space wavelengths but 

mathematically it is often easier to use angular frequency. The two are interchangeable 

(with relevant scaling) in all following equations. 

1.1 Optical Fibre 

This section will focus on the relevant effects optical fibres impose on transmitted light, 

namely attenuation and wavelength dependent linear effects such as dispersion. The 

nonlinear effects will be discussed in section 1.3. The differences in the structural and 

therefore optical properties of MOF will also be examined and the changes such unique 

guides have on the waveguide properties for fundamental and potential higher-order 

electromagnetic modes in these fibres will be detailed. 

1.1.1 Numerical Aperture 

The simplified explanation for light guiding by an optical fibre is one of total internal 

reflection, where a higher refractive index core glass is surrounded by a lower refractive 

index cladding glass, and guidance is achieved for light undergoing total internal 

reflection at the interface between the two glasses. The structure of the basic step-index 

optical fibre, shown in Figure 1.1, can be considered as a cylindrical waveguide. 

 

Figure 1.1: Propagation of light by an optical fibre [3] 

Light must enter the core of the fibre below a maximum angle to satisfy the condition 

for total internal refraction at the core/cladding boundary as expressed in equation (1.2).  

 
𝜔 =

2𝜋𝑐

𝜆0
 

(1.1) 
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The Numerical Aperture (NA) of a fibre is defined by the refractive indices of the 

media. 

In these equations, 𝑛1 and 𝑛2 are the core and cladding refractive indices and 𝑛 is the 

refractive index external to the fibre and is usually simplified to 1 as, in most cases, the 

fibre is held in free space or air. 

1.1.2 Attenuation 

Optical fibre is made from the most pure and transparent materials ever manufactured, 

however, it still has intrinsic optical loss. This loss is defined by the attenuation, a value 

that is a specified property of an optical fibre for engineering purposes, given in 

deciBels/length by; 𝑎(𝜆0) 𝑑𝐵 𝑘𝑚⁄  and varies with wavelength 𝜆0 as shown in Figure 

1.2. 

The electromagnetic (EM) power transmitted through some distance 𝐿2(𝑘𝑚) of a fibre, 

𝑃2𝑧(𝑑𝐵𝑚), is measured and the fibre “cut-back” to a length, 𝐿1(𝑘𝑚), resulting in a 

higher power 𝑃1(𝑑𝐵𝑚) being measured. The attenuation, a (dB/km), is calculated from 

equation 1.4 as the initial launched power, Po, is unknown due to coupling losses at the 

interface. It may be converted to the Beer’s Law absorbance of the fibre if needed.  

The mechanisms behind loss in an optical fibre are mostly due to the material properties 

of the fused silica. This material can have water embedded from initial manufacture, 

creating OH bond vibrational absorptions, as well as the inherent UV electronic and 

infrared vibrational absorptions of SiO2, with the Rayleigh scattering properties of the 

glassy state of silica and waveguide losses as a minor contributor. 

The wavelength dependence of loss is shown in Figure 1.2. The minimum loss is where 

the Rayleigh scattering and residual UV absorption have minimised and is after the 

 
𝜃𝑚𝑎𝑥 = sin−1 (

√𝑛1
2 − 𝑛2

2

𝑛
) 

(1.2) 

 
𝑁𝐴 = 𝑛 sin (𝜃𝑚𝑎𝑥) = √𝑛1

2 − 𝑛2
2 

(1.3) 

 
𝑎(𝑑𝐵 𝑘𝑚⁄ ) =

𝑃2(𝑑𝐵𝑚) − 𝑃1(𝑑𝐵𝑚)

|𝐿2(𝑘𝑚) − 𝐿1(𝑘𝑚)|
 

(1.4) 
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water (OH) peak at 1400 nm, before the NIR vibrational absorption begins. The various 

loss mechanisms are not critical to the understanding of this thesis apart from the fact 

that they exist. There is a relatively low loss optical window from 400 nm – 2000 nm in 

which silica fibre is used and in this thesis, the transmission length is of the order of 1 

meter so loss is not a significant factor. 

 

Figure 1.2: Attenuation of fused silica optical fibre [4]. 

1.1.3 Refractive Index of Optical Fibre 

The interaction of light propagation within a bulk material is often described primarily 

by a refractive index. The refractive index 𝑛 is a measure of the ratio of the phase 

velocity of light in that material with respect to the free space velocity of light, 𝑐 ≅ 3 ×

108 𝑚𝑠−1. This phase velocity is wavelength dependent and is in this text defined as a 

function of the free space wavelength (𝜆0). The actual wavelength in the material 𝜆 is 

changed by shift in phase velocity. 

 𝑛(𝜆0) =
𝑐

𝑣(𝜆0)
  (1.5) 
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𝜆 =

𝜆0

𝑛(𝜆0)
 

(1.6) 

The material properties are not the only factor that affects refractive index. In 

waveguides such as optical fibre, the EM mode that conveys the optical energy also has 

an effect on the phase velocity of light. These EM modes are defined to have an 

effective index 𝑛𝑒𝑓𝑓, that is, the linear combination of the material refractive index and 

waveguide mode refractive index. This will be discussed further in section 1.1.4 but it is 

important to note that the mode affects all of the following parameters. 

The group index 𝑛𝑔 is similarly a measure of the group velocity of light, vg. This is 

important for pulses and wave packets as the enveloping light amplitude pulse will 

travel at the group velocity so the group index is directly related to the refractive index 

derivative. 

The group velocity is useful as it is the true indication of the velocity of information 

through a fibre. 

Group Velocity Dispersion (GVD), often referred to as simply dispersion, is the 

measure of the variation of group velocity with respect to wavelength. This is a critical 

optical fibre property as it dictates the spread of a finite bandwidth pulse over time as 

different wavelengths travel at different velocities. It is directly related to the derivative 

of the group index and is often referred to as 𝐷 (in units of ps.nm
-1

.km
-1

) or as 𝛽2 (in 

units of ps
2
.km). 

Dispersion can be both positive and negative (unlike refractive and group index) and is 

defined as normal when D is negative (longer wavelengths will travel faster) and 

anomalous when D is positive (longer wavelengths will travel slower). As can be seen 

in Figure 1.3, most materials will change from normal to anomalous dispersion at some 

point. This is known as the zero GVD point and is located at approximately 1300 nm for 

bulk silica. A pulse in the linear regime at a zero GVD point wavelength will have 

 
𝑛𝑔(𝜆0) =

𝑐

𝑣𝑔(𝜆0)
= 𝑛(𝜆0) − 𝜆0

𝑑𝑛

𝑑𝜆0
 

(1.7) 

 
𝐷 =

1

𝑐

𝑑𝑛𝑔

𝑑𝜆0
= −

𝜆0

𝑐

 𝑑2𝑛

𝑑𝜆0
2 = −

2𝜋𝑐

𝜆0
2 𝛽2  

(1.8) 
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effectively no dispersion, maintaining its temporal shape and spectral characteristics as 

it propagates. 

 

Figure 1.3: Refractive index, group index and dispersion for bulk fused silica. These data are 

modelled from the Sellmeier equation of fused silica shown in equation (3.1). The code can be found 

in appendix 10.3.2. 

1.1.4 Electromagnetic Modes in Optical Fibre 

The most common form of optical fibre is that used in telecommunications, i.e. a step-

index optical fibre which can be thought of as a cylindrical waveguide. The propagation 

of electromagnetic (EM) waves through this structure is determined by the propagation 

constant 𝛾. 

where  

𝐴(𝑥, 𝑦, 𝑧) is the complex spatial amplitude of the EM field in the media, and is confined 

by the boundary limits when propagating in a waveguide. 

𝛼(𝜆0) is the attenuation constant and is a function of wavelength as shown in 1.1.2. 

 𝛾 = 𝛼 + 𝑖𝛽 (1.9) 

 𝐴𝑧

𝐴0
= 𝑒𝛾𝑧 

(1.10) 
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𝛽(𝜆0) is the phase constant and is also a function of wavelength and is directly related 

to the refractive index 𝑛𝑒𝑓𝑓, combining the conventional material refractive index, n, 

and the waveguide index mentioned in 1.1.3. 

The values for 𝛼 and 𝛽 are dependent on the physical size, shape and material of the 

waveguide, the wavelength of the light, and the EM mode within the particular 

waveguide in which the light is travelling. Each EM mode is a discrete solution that 

allows a constructive phase relation of the EM field within the geometry of the 

waveguide. The principal guided modes have minimal loss, while “leaky” modes lose 

energy and are therefore, lossy. Analytical solutions exist for perfectly circular 

waveguides and perfect boundary conditions, while numerical methods may be 

employed to solve for the lossy modes. 

Modes of an electro-magnetic waveguide are designated:  

 TEM (Transverse Electromagnetic). Light propagating in free space has this 

property. These modes can also exist in waveguides with at least two conducting 

surfaces. 

 TM (Transverse Magnetic). The magnetic field is perpendicular to the direction 

of travel. 

 TE (Transverse Electric). The electric field is perpendicular to the direction of 

travel. 

 HE (Hybrid mode TE dominates). These hybrid fields have both electric and 

magnetic fields in the direction of travel. 

 EH (Hybrid mode TM dominates). 

 
𝛽(𝜆0) = 𝑛𝑒𝑓𝑓(𝜆0)

2𝜋

𝜆0
 

(1.11) 
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Figure 1.4: HE11 mode of an optical fibre. Solid lines represent E field and dashed lines represent H 

field. 𝝀𝒈 is the waveguide wavelength and z is the direction of travel. This mode combines with near 

energetically degenerate modes to form the LP01 mode [5]. 

 

 

Figure 1.5: TE01 TM01 and HE21 EM modes in optical fibre. These modes combine with near 

energetically degenerate modes to form to the LP11 mode [5]. 
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Figure 1.6: EH11 and HE31 EM mode. These modes combine with near energetically degenerate 

modes to form the LP21 mode [5]. 

Often these modes are simplified to Linearly Polarised (LP) modes as it is difficult to 

separate them without reference to a discrete feature of the fibre defining an axis. For 

example, the linear polarisation of the modes in Figure 1.5 result in the LP11 EM mode 

shown in Figure 1.7. In much of the work in this thesis, the LP approximation cannot be 

used as, indeed, there is a feature of the fibre providing an axis of discrimination and the 

modes are not energetically degenerate as a result of the fibre structure. 

 

Figure 1.7: Linearly polarised (LP) modes for step index fibre. The colour designates the sign of the 

electric field (red +, blue - ) in the plane of the page direction while the colour depth represents the 

intensity [6]. 

Each mode will have a different propagation constant, and, as a result, a different 

effective refractive index. Coupling between modes is usually minimal and will only 

occur strongly if the propagation constants overlap. 
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It is enlightening to look at one of the most common fibres in the world, Corning SMF-

28. This is a step-index fibre that has single mode propagation at telecommunication 

wavelengths but can easily support higher order modes at shorter wavelengths. The 

following diagram shows the effective index of a number of propagating modes in 

SMF-28. 

 

Figure 1.8: First four effective mode refractive indices (black) for corning SMF-28 with the core 

and cladding index shown in red. Note this fibre is single moded past 1440 nm. Inserts show 

normalised E field intensities at 500 nm for the four modes in order of decreasing index from left to 

right with the 8.2 micron core shown in black. 

Wavelengths that are too long will not strongly propagate within the fibre. This is 

observed as a cut-off wavelength and is where each of the higher order mode effective 

indices visible in Figure 1.8 fall to equal the cladding index so that the mode will no 

longer propagate as a guided mode at any longer wavelength.  

The four modes displayed in Figure 1.8 are all combinations of the modes shown in the 

previous figures (Figures 1.4 - 1.6). Many of those modes are degenerate, meaning that 

while the structure of the E and H field is different, the effective mode index is the 

same. The following diagrams show the modes comprising the mode structure for each 

of the four intensity profiles shown in Figure 1.8 and their E fields in the x-y plane. 

These match the diagrams shown previously in Figures 1.4 - 1.6. 
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Figure 1.9: First (fundamental, LP01) mode of SMF-28. This is a HE11 mode as shown in Figure 1.4. 

This mode has a degeneracy of 2 as can be seen by the two E field orientations. 

 

Figure 1.10: Second (LP11) mode of SMF-28. This is a TE01 mode, TM01 mode and a HE21 mode 

with a degeneracy of 2 resulting in a total of four degenerate modes. Full diagrams of these modes 

can be found in Figure 1.5. 

HE11 HE11
*
 

TE01 TM01 

HE21 HE21
*
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Figure 1.11: Third (LP21) mode of SMF-28. This a pair of two degeneracy HE31 and EH11 modes 

resulting in four mode degeneracy. Full diagrams of these modes can be found in Figure 1.6 

 

Figure 1.12: Fourth (LP02) mode of SMF-28. This is a doubly degenerate HE12 mode. 

1.2 Microstructured Optical Fibre 

While most optical fibres are made of silica doped with a small concentration of 

impurities to give the required variation in refractive index, there are other ways to 

achieve this guiding property. In the 1990s, people began manufacturing fibre that was 

not a solid cylinder, but was instead a cylinder of pure silica, providing the solid 

structure, with arrangements of voids or holes running the length of the fibre that were 

simply filled with air. These complicated fibres are generally referred to as 

Microstructured Optical Fibre (MOF), although they are sometimes referred to as 

photonic crystal fibre due to the ability for certain designs to make use of a Bragg 

reflection based photonic band gap effect to contain the light. This effect is not 

HE31 HE31
*
 

EH11 EH11
*
 

HE12 HE12
*
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prevalent in the fibres used within this thesis, however, and the guiding property of the 

fibre is still that of total internal reflection where a solid core has a higher effective 

refractive index than the array of air holes which surrounds it. 

Early examples of this type of fibre were not particularly uniform, as the manufacturing 

and, principally, drawing techniques were not yet developed. However, the technology 

still allowed for the development of endlessly single moded fibre [7,8] and novel 

sensing and optical control when the voids were filled with liquids and gases other than 

atmosphere. 

 

Figure 1.13: A simple example of a MOF. Blue areas indicate pure fused silica and white spaces 

indicate voids. The design geometry is not limited, however, a hexagonal base pattern is often used 

as it allows equal spacing between elements and is a consequence of the hexagonal close packing of 

rods and tubes in the fibre preform assembly. Further real examples can be seen in Section 2.2. 

A potential design of a MOF is shown in Figure 1.13. The guiding mechanism for this 

fibre uses the average refractive index of the area surrounding the core. While the core 

section of the fibre itself has a refractive index of pure fused silica, the surrounding area 

is a combination of silica and air and has a lowered averaged refractive index. With the 

correct ratio of air to silica and the size of the microstructured elements, these MOFs 

will act as a waveguide quite similar to standard optical fibre, however, the large 

refractive index difference between the core and the cladding allows for a much smaller 

core and hence a much smaller effective mode area, increasing the intensity of the light 

within the waveguide. 

As well as significant changes to the waveguide index, modifying  𝑛𝑒𝑓𝑓 significantly 

changes the overall dispersion of the waveguide and greatly lowers the zero GVD point 

as shown in Figure 1.14 
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Figure 1.14: Refractive index, group index and dispersion for Thorlabs NL-2.8-850-02 fibre (solid) 

and Corning SMF28 fibre (dashed), showing the significant difference in the group index and 

dispersion of MOF in comparison to regular step index fibre where only small changes from the 

index of bulk silica cause guiding. The data shown is from Chapter 3. 

Unless specifically designed to be single moded, most MOF will allow the propagation 

of multiple EM modes within the visible and near infrared wavelengths. These modes, 

while similar to the ideal cylindrical case discussed in section 1.1.4, will not follow the 

same pattern exactly, and while the fundamental mode is usually a Gaussian shape or 

similar, the higher order modes will often have much more complicated structure [9]. In 

addition to this, the degeneracy of the modes found in the SMF-28 fibre can be split by 

the large refractive index changes in the microstructure. Full modelling of the supported 

EM modes can be seen in Chapter 3. 

1.3 Nonlinear Optics 

Nonlinear optics arises from the response of material to extreme optical intensity. In 

linear optics, the electromagnetic radiation is considered (and defined) to have a directly 

linear effect on the medium. Most optically transparent materials can be considered to 

be a rigid lattice of positive charges, each with a tightly bound negative charge of equal 

magnitude. The application of an external electric field to this lattice causes the electric 
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charges to separate slightly into a dipole. This is measured as an electric dipole moment 

𝒑 defined by 

 𝒑 = 𝑞𝒅 (1.12) 

where 𝑞 is the charge magnitude and 𝒅 is the displacement vector from the negative to 

the positive charge. 

While this value is useful for defining a single dipole, the effects in bulk material occur 

over a large number of atoms. A more useful form of this is the polarisation density 𝑷, 

often simply referred to as polarisation, and defined as the density of induced electric 

dipole moment 𝒑 within a volume. 

 
𝑷 =

𝑑𝒑

𝑑𝑉
 

(1.13) 

As most materials are not ferroelectric they have no base polarisation, so the direction 

of the dipole moment and hence the polarisation is defined entirely by the electric field 

𝑬. The degree of this polarisation is controlled by the electrical susceptibility of the 

material 𝜒. 

 𝑷 = 𝜀0𝜒𝑬 (1.14) 

Here, 𝜒 defines the degree to which the charges in the atomic structure of the dielectric 

will separate into dipoles under the effect of an external electric field. For all the 

materials in use, the permeability is assumed equal to that of free space and hence 𝜒 can 

be directly related to the refractive index for all homogenous and isotropic mediums. 

 𝜇𝑟 = 1 (1.15) 

 𝑛𝑒𝑓𝑓
2 = 𝜒 + 1 (1.16) 

Equation (1.14), however, is an approximation, as it assumes a fixed uniform simple 

lattice of charges that can undergo a polarisation due to an external electric field with no 

interaction between individual charge pairs. While this is a very good approximation of 

the atomic lattice of highly rigid materials such as silica, under very high intensity 

electric fields the complexity of the lattice structure with unequal negative and positive 

charge distributions in each Cartesian coordinate direction, and the interactions of near 
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neighbouring charges, means that the resultant polarisation density for an electrical field 

is expanded as a Taylor series. 

This is the general expression of (1.14) that can accommodate all nonlinear effects. 

Here 𝜒𝑛 are the n
th

 order electric susceptibilities of the medium. In the general form, 𝜒𝑛 

is an n+1 order tensor representing the nonlinear interaction in all directions. Higher 

order susceptibilities become increasingly smaller and, as such, historically, effects past 

those of 𝜒3 were rarely considered. The advent of extreme ultra-short pulsed laser 

intensities does, however, require higher orders than 𝜒3to be included in any analysis.  

𝜒1 is identical to the linear susceptibility in equation (1.14). 

𝜒2 is nonzero only for compounds that lack an inversion symmetry on a molecular or 

crystalline level. Silica is symmetric and therefore 𝜒2 is zero and any of the nonlinear 

phenomena dependent on it are not observed in silica optical fibre. 

𝜒3 is nonzero for all materials and relatively small, however, when factored with 𝑬3 has 

a significant effect on the polarisation density at high optical intensities. 

Thus it is possible to split the overall polarisation density into linear and nonlinear 

components when considering 𝜒1 and 𝜒3 effects as shown below. This can help to 

simplify proofs, as the total polarisation density is the linear combination of the two. 

 𝑷𝐿 = 𝜀0𝜒1𝑬 (1.18) 

 𝑷𝑁𝐿 = 𝜀0𝜒3𝑬3 (1.19) 

 𝑷 = 𝑷𝐿 + 𝑷𝑁𝐿 (1.20) 

1.3.1 Kerr Effect 

The Kerr effect is the most basic material response of a nonlinear medium. This 

response is observed as a change in the medium refractive index proportional to the 

optical intensity within that medium. As such, the refractive index can be written as a 

combination of the material or waveguide refractive index and the nonlinear response. 

 𝑷 = 𝜀0[𝜒1𝑬 + 𝜒2𝑬2 + 𝜒3𝑬3 + ⋯ + 𝜒𝑛𝑬𝑛] (1.17) 
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The full derivation of this is not shown, as it is an inherent part of the Cross-Phase 

Modulation (XPM) derivation that is shown in 1.3.3. 

 𝑛̃(𝜆0, |𝐸|2) = 𝑛𝑒𝑓𝑓(𝜆0) + 𝑛2|𝐸|2 (1.21) 

 
𝑛2 =

3

8𝑛𝑒𝑓𝑓(𝜆0)
𝑅𝑒(𝜒𝑟𝑟𝑟𝑟

3 ) 
(1.22) 

Here |𝐸|2 is the optical intensity of the 𝑬 field and 𝑛2 is affected by the real component 

of the 𝜒3 tensor in the linear plane of polarisation of the 𝑬 field as denoted by the 𝑟 

subscript. 𝒓̂ is used as the direction of polarisation in equation (1.24) and throughout 

this chapter. 

This seemingly basic material response results in numerous effects that are discussed in 

the following sections. Effects resulting from equation (1.21) are known collectively as 

Kerr effects. 

It is useful to define the following parameter, the nonlinear coefficient 

where 𝐴𝑒𝑓𝑓 is the effective mode area, 𝜔0 is the angular frequency, 𝑛2 is defined in 

equation (1.22) and c is the speed of light. The nonlinear coefficient is commonly used 

to represent the magnitude of the nonlinear optical response to incident light. 

1.3.2 Self-Phase Modulation 

Self-Phase Modulation (SPM) is a direct result of the Kerr effect. The SPM experienced 

by a single optical pulse is investigated. 

Equation (1.24) represents an electrical field propagating at an angular frequency of 𝜔0 

and with an intensity profile defined by 𝐸(𝑡) that is a slowly varying function of time 

compared with an optical period. To solve for the nonlinear polarisation density of the 

pulse in a medium, it must be substituted into (1.19). 

 
𝛾 =

𝜔0𝑛2(𝜔0)

𝑐𝐴𝑒𝑓𝑓(𝜔0)
 

(1.23) 

 
𝑬(𝒓, 𝑡) = 𝒓̂

1

2
𝐸(𝑡)[𝑒(−𝑖𝜔0𝑡) + 𝑒(𝑖𝜔0𝑡)] 

(1.24) 
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For any time-varying light intensity propagating in a fibre, such as an optical pulse, the 

intensity of the light will generate a time varying refractive index change around the 

pulse. The front of the pulse will experience an increasing refractive index while the 

back of the pulse will experience a decreasing refractive index. This process creates a 

phase shift within the pulse. 

where 𝑥 is the distance the pulse has propagated and 𝛽0 is the free space wavenumber. 

This can be rewritten as a function of time for a varying optical intensity, using 𝜔0 as 

the centre angular frequency of the pulse. 

This phase shift results in an instantaneous frequency change given by 

This phase shift is entirely dependent on the intensity of the pulse and can be calculated 

for various pulse profiles. This effect is shown in Figure 1.15 where the leading and 

trailing edges of the pulse generate a lower and higher instantaneous frequency. As a 

result of this, the pulse will develop a “chirp” where the pulse angular frequency will 

shift to a lower frequency at the leading edge, moving back to 𝜔0 at the centre and 

generating a higher frequency as the intensity decreases past the temporal maximum. 

 
𝜙 = 𝛽0𝑛̃𝑥 − 𝜔0𝑡 =

2𝜋

𝜆0
𝑥[𝑛𝑒𝑓𝑓(𝜆0) + 𝑛2|𝐸|2] − 𝜔0𝑡 

(1.25) 

 
𝜙(𝑡) =

2𝜋

𝜆0
𝑥𝑛𝑒𝑓𝑓(𝜆0) +

2𝜋

𝜆0
𝑥𝑛2|𝐸(𝑡)|2 − 𝜔0𝑡 

(1.26) 

 
𝜔̌(𝑡) = −

𝑑𝜙(𝑡)

𝑑𝑡
= 𝜔0 −

2𝜋

𝜆0
𝑥𝑛2

𝑑|𝐸(𝑡)|2

𝑑𝑡
 

(1.27) 
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Figure 1.15: The instantaneous frequency (red) of a Gaussian light pulse (blue) with a 200 fs 

FWHM and 10 nJ energy at 800 nm wavelength contained evenly in a silica fibre with a core radius 

of 5 µm and a length of 0.1 m. The code can be found in appendix 10.3.3. 

1.3.3 Cross-Phase Modulation 

Cross-Phase Modulation (XPM) occurs with co-propagating beams and is another Kerr 

effect. In XPM the refractive index seen by the propagating light depends not only on 

the intensity of the beam itself but any other light also propagating in the same medium 

at the same time. 

 𝑬(𝒓, 𝑡) = 𝑬𝟏(𝒓, 𝑡) + 𝑬𝟐(𝒓, 𝑡) (1.28) 

 
𝑬(𝒓, 𝑡) = 𝒓̂

1

2
𝐸1(𝑡)[𝑒(−𝑖𝜔1𝑡) + 𝑒(𝑖𝜔1𝑡)] + 𝒓̂

1

2
𝐸2(𝑡)[𝑒(−𝑖𝜔2𝑡) + 𝑒(𝑖𝜔2𝑡)] 

(1.29) 

Here the electric field 𝑬 is a combination of two fields polarised in the same direction 

similar to equation (1.24). By substituting equation (1.29) into (1.19) the nonlinear 

effects of these two beams can be observed. As the result is quite large, 𝐸1(𝑡) and 𝐸2(𝑡) 

have been written as 𝐸1 and 𝐸2 to neaten the result, however, they are still functions of 

time. 
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The first two lines of this equation show the nonlinear response at the two input 

frequencies. The remaining lines show responses at altered frequencies with lines three 

and four indicating third harmonic generation, an effect that requires phase matching 

and is rarely seen in silica. Lines five and onwards show the effects of four wave mixing 

and will be discussed further in section 1.3.4. For now the SPM and XPM parts of this 

equation are: 

 
𝑷𝑁𝐿 𝜔1

(𝒓̂, 𝑡) =
3

4
𝜀0𝜒3[|𝐸1|2 + 2|𝐸2|2]𝒓̂

1

2
𝐸1[𝑒(−𝑖𝜔1𝑡) + 𝑒(𝑖𝜔1𝑡)] 

(1.31) 

or 
𝑷𝑁𝐿 𝜔1

(𝒓̂, 𝑡) =
3

4
𝜀0𝜒3[|𝐸1|2 + 2|𝐸2|2]𝑬𝟏(𝒓̂, 𝑡) 

(1.32) 

where (1.31) is taken from line one of (1.30). The same proof can be used for 𝜔2 as well 

as all following equations in this section. The full polarisation density at this frequency 

can hence be written as 

This is of the same form as (1.14) and as such the term in the brackets can be taken as 

the perturbed 𝜒 due to nonlinearities. This can be directly related to the refractive index 

through (1.16). 

 
𝑷𝑁𝐿 = 𝒓̂

1

23
𝜀0𝜒3[{3𝐸1

3 + 6𝐸1𝐸2
2}{𝑒(−𝑖𝜔1𝑡) + 𝑒(𝑖𝜔1𝑡)}                               

+ {3𝐸2
3 + 6𝐸1

2𝐸2}{𝑒(−𝑖𝜔2𝑡) + 𝑒(𝑖𝜔2𝑡)}

+ {𝐸1
3}{𝑒(−𝑖3𝜔1𝑡) + 𝑒(𝑖3𝜔1𝑡)}  

+ {𝐸2
3}{𝑒(−𝑖3𝜔2𝑡) + 𝑒(𝑖3𝜔2𝑡)}  

+ {3𝐸1
2𝐸2}{𝑒(−𝑖(2𝜔1+𝜔2)𝑡) + 𝑒(𝑖(2𝜔1+𝜔2)𝑡)}

+ {3𝐸1
2𝐸2}{𝑒(−𝑖(2𝜔1−𝜔2)𝑡) + 𝑒(𝑖(2𝜔1−𝜔2)𝑡)}

+ {3𝐸1𝐸2
2}{𝑒(−𝑖(2𝜔2+𝜔1)𝑡) + 𝑒(𝑖(2𝜔2+𝜔1)𝑡)}

+ {3𝐸1𝐸2
2}{𝑒(−𝑖(2𝜔2−𝜔1)𝑡) + 𝑒(𝑖(2𝜔2−𝜔1)𝑡)}] 

(1.30) 

 
𝑷𝜔1

(𝒓̂, 𝑡) = 𝜀0𝜒1𝑬𝟏 + 𝜀0

3

4
𝜒3[|𝐸1|2 + 2|𝐸2|2]𝑬𝟏 

(1.33) 

or 
𝑷𝜔1

(𝒓̂, 𝑡) = 𝜀0 [𝜒1 +
3

4
𝜒3[|𝐸1|2 + 2|𝐸2|2]] 𝑬𝟏 

(1.34) 
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𝑛̃2 = 1 + 𝜒1 +

3

4
𝜒3[|𝐸1|2 + 2|𝐸2|2] 

(1.35) 

so 

𝑛̃2 = 𝑛𝑒𝑓𝑓
2 [1 +

3

4𝑛𝑒𝑓𝑓
2 𝜒3[|𝐸1|2 + 2|𝐸2|2]] 

(1.36) 

or 𝑛̃(𝜆0, |𝐸1|2, |𝐸2|2) ≈ 𝑛𝑒𝑓𝑓(𝜆0) + 𝑛2[|𝐸1|2 + 2|𝐸2|2] (1.37) 

where 
𝑛2 =

3

8𝑛𝑒𝑓𝑓(𝜆0)
𝑅𝑒(𝜒𝑟𝑟𝑟𝑟

3 ) 
(1.38) 

Equation (1.37) has been derived knowing that 1 + 𝜒1 = 𝑛𝑒𝑓𝑓
2  and the approximation 

√1 + 𝑥 ≈ 1 +
𝑥

2
 when 𝑥 is small. This is valid as the nonlinear refractive index 𝑛2 is 

generally very small. 

 𝜒3 has been simplified to its real component in the direction of polarisation and again 

𝑛2 has been used to simplify the equation as in equation (1.21). Equation (1.37) should 

appear similar to equation (1.21) but it now defines both SPM and XPM. The SPM 

comes from the first term in the brackets and is the intensity of the original field itself. 

The XPM comes from the second term in the brackets and is dependent on the intensity 

of the second field. For equally intense optical fields of different wavelengths the 

contribution from XPM is twice as strong as the contribution from SPM. The total phase 

modulation can now be written as 

Equation (1.39), which gives the phase modulation in the first electric field, is the same 

as that in (1.26), however, it now includes the effects of the second electric field. As can 

be imagined, the resulting instantaneous frequency shift due to XPM can become quite 

complicated depending on the intensity profiles of the two propagating fields. 

 
𝜙1(𝑡) =

2𝜋

𝜆1
𝑥𝑛𝑒𝑓𝑓(𝜆1) +

2𝜋

𝜆1
𝑥𝑛2|𝐸1(𝑡)|2 +

4𝜋

𝜆1
𝑥𝑛2|𝐸2(𝑡)|2 − 𝜔1𝑡 

(1.39) 

 
𝜔̌(𝑡) = −

𝑑𝜙(𝑡)

𝑑𝑡
= 𝜔1 +

2𝜋

𝜆1
𝑥𝑛2

𝑑|𝐸1(𝑡)|2

𝑑𝑡
+

4𝜋

𝜆1
𝑥𝑛2

𝑑|𝐸2(𝑡)|2

𝑑𝑡
 

(1.40) 
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1.3.4 Wave Mixing 

As noted previously, the expansion for the polarisation density of two co-propagating 

waves has numerous components as shown in (1.30). The final four lines of this 

equation show the generation of new frequencies. These have been included below 

Clearly these terms show oscillations at four new frequencies, 2𝜔1 ± 𝜔2 and 2𝜔2 ± 𝜔1. 

This is known as four wave mixing. The full four wave mixing requires an expansion of 

three E field terms and associated frequencies into equation (1.19) and gives rise to the 

following 16 new generated frequencies 𝜔𝑔 excluding third harmonic generation. 

While these many new frequencies are excited by the nonlinear interaction of the 

medium, very rarely are such combinations of light generated. The reason for this is that 

for any of these frequencies to become significantly intense, they must be phase 

matched with the original frequencies for efficient energy transfer. When the phase of 

these frequencies is matched, then the generated polarisation oscillations will 

constructively interfere and produce the new frequency of light. To phase match, the 

phase constant, 𝛽(𝜆0), defined in equation (1.11), must be matched with the original 

and generated frequencies by the mixing equations defined above in (1.42) and (1.43). 

As the refractive index of silica varies significantly over a large frequency range, as is 

evident in Figure 1.3, it is usually rare that this occurs, i.e 𝛽𝑔 ≠ 2𝛽2 + 𝛽3. 

 
𝑷𝑁𝐿 = 𝒓̂

1

23
𝜀0𝜒3[{3𝐸1

2𝐸2}{𝑒(−𝑖(2𝜔1+𝜔2)𝑡) + 𝑒(𝑖(2𝜔1+𝜔2)𝑡)}

+  {3𝐸1
2𝐸2}{𝑒(−𝑖(2𝜔1−𝜔2)𝑡) + 𝑒(𝑖(2𝜔1−𝜔2)𝑡)}

+  {3𝐸1𝐸2
2}{𝑒(−𝑖(2𝜔2+𝜔1)𝑡) + 𝑒(𝑖(2𝜔2+𝜔1)𝑡)}

+  {3𝐸1𝐸2
2}{𝑒(−𝑖(2𝜔2−𝜔1)𝑡) + 𝑒(𝑖(2𝜔2−𝜔1)𝑡)}] 

(1.41) 

 𝜔𝑔 = 𝜔1 ± 𝜔2 ± 𝜔3 (1.42) 

 𝜔𝑔 = 2𝜔1 ± 𝜔2 

      = 2𝜔1 ± 𝜔3 

      = 2𝜔2 ± 𝜔1 

      = 2𝜔2 ± 𝜔3 

      = 2𝜔3 ± 𝜔1 

      = 2𝜔3 ± 𝜔2 

(1.43) 
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The cases where phase matching does occur can usually be narrowed down to situations 

where the system has been engineered to give efficient generation for some wave 

mixing component, as well as when the original frequencies are close together. For 

example 𝜔𝑔 = 2𝜔1 − 𝜔2 ≈ 𝜔1 as long as 𝜔1 ≈ 𝜔2. In this case the phases are matched 

as the refractive index is similar for frequencies that are close together. 

For systems with intense wavelengths that are close together, four wave mixing may 

generate the wavelengths in between, smoothing over the gaps in the spectrum. 

1.3.5 Solitons 

Solitons exist for a material such as silica with a positive 𝑛2 within regions of 

anomalous dispersion (see section 1.1.3) and are specific temporal intensity profiles 

such that the dispersion from the material and waveguide is equal and opposite to the 

dispersion from SPM. While it is possible for spatial solitons to exist in fibre, it is 

temporal solitons that have a significant effect on supercontinuum generation and as 

such only they will be discussed here. 

The solution comes about from solving the Helmholtz equation 

where 𝑛̃(𝜔) is the full nonlinear index as described in equation (1.21) written in terms 

of angular frequency instead of free space wavelength. 𝑘0 is the wavenumber and 𝐸 is 

the electric field similar to equation (1.24) but E is also dependent on the propagation 

distance through the fibre 𝑧 as shown below. 𝛽0 is the phase constant that was first used 

in (1.11). 

The full mathematical proof of solitons in optical fibre can be found in other texts [10] 

and will not be derived here as only the result is important. It is helpful, however, to 

consider a number of mathematical tricks to simplify the result. As the soliton is 

travelling at some group velocity 𝑣𝑔 = 𝑐 𝑛𝑔(𝜔0)⁄  and only the relative changes, not the 

full propagation, are important, a time 𝑇 can be normalised as a reference moving with 

the field at the same velocity. 

 ∇2𝐸 + 𝑛̃(𝜔, |𝐸|2)2𝑘0
2𝐸 = 0 (1.44) 

 
𝑬(𝒓, 𝑡) = 𝒓̂

1

2
𝐸(𝑡, 𝑧)[𝑒−𝑖(𝜔0𝑡−𝛽0𝑧) + 𝑒𝑖(𝜔0𝑡−𝛽0𝑧)] 

(1.45) 
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In addition, the following useful relations can be made, creating dimensionless 

measurements of time and distance 𝜏 and 𝜁. 

Here 𝛽2 is the dispersion defined in (1.8), 𝛾 is the nonlinearity of the medium (as 

opposed to the propagation constant in section 1.1.4), 𝑃0 is the peak pulse power and is 

dependent on the maximum value of 𝐸(𝑡, 𝑧) and 𝑇𝑜 is the temporal width. 𝑁 is the 

corresponding order of the soliton and is an integer, giving rise to multiple solutions as 

shown in equation (1.51). 

The Helmholtz equation (1.44) then becomes the normalised Nonlinear Schrödinger 

Equation (NSE). 

This equation dictates the balance between dispersion and nonlinearity. 

The fundamental soliton when 𝑁 = 1 is given by 

This means that for a light pulse with a hyperbolic secant temporal profile and sufficient 

intensity, the temporal and spectral profile of the pulse will be constant as it travels 

along the fibre. There are higher order solutions to Equation 1.51, corresponding to 

 𝑇 = 𝑡 −
𝑐

𝑛𝑔(𝜔0)
𝑧 (1.46) 

 
𝐿𝑑 =

𝑇0
2

|𝛽2|
 

(1.47) 

 
𝜏 =

𝑇

𝑇0
 

(1.48) 

 𝜁 =
𝑧

𝐿𝑑
 (1.49) 

 
𝑁2 =

𝛾𝑃0𝑇0
2

|𝛽2|
 

(1.50) 

 1

2

𝜕2𝐸

𝜕𝜏2
+ 𝑖

𝜕𝐸

𝜕𝜁
+ 𝑁2|𝐸|2𝐸 = 0 

(1.51) 

 
𝐸(𝜏, 𝜁) = sech(𝜏) 𝑒

𝑖𝜁
2  

(1.52) 
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solitons exhibiting a repeating dynamic inverse frequency bandwidth and temporal 

compression interchange over characteristic spatial lengths. Figure 1.16 shows 

propagation in units of this characteristic length zsol for N = 3. For positive integer 

values of 𝑁, the solutions increase in complexity as 𝑁 increases as seen in equations 

1.53 and 1.54, the solutions for N = 2 and 3 [2,10,11]. 

 

Figure 1.16: Spectral and temporal evolution of an N=3 or 3
rd

 order soliton. [2] 

Solitons are surprisingly robust within optical fibre. As long as the light is propagating 

in the anomalous dispersion region, any sufficiently intense optical pulse with a 

temporal and spectral width of the right magnitude will self-phase modulate until it 

matches the profile of the corresponding N
th

 order soliton. The ability of solitons to 

recover from perturbations decreases as the order is increased . A soliton with order N ≥ 

2 will often eventually split into N first order solitons as dispersion and other nonlinear 

 
𝐸(𝜏, 𝜁) = 4𝑒

𝑖𝜁
2 ×

cosh(3𝜏) + 3cosh (𝜏)𝑒4𝑖𝜁

cosh(4𝜏) + 4 cosh(2𝜏) + 3cos (4𝜁)
 

(1.53) 

 𝐸(𝜏, 𝜁)

= 6𝑒
𝑖𝜁
2 ×

[
cosh(8𝜏) + 8 cosh(6𝜏) 𝑒𝑖4𝜁 + (18𝑒𝑖4𝜁 + 10𝑒𝑖12𝜁) cosh(4𝜏)

+(16 + 40𝑒𝑖12𝜁) cosh(2𝜏) + 16𝑒𝑖12𝜁 + 22.5𝑒𝑖8𝜁 + 2.5𝑒−𝑖8𝜁
]

[
cosh(9𝜏) + 9 cosh(7𝜏) + 36 cos(4𝜁) cosh(5𝜏)

+(64 + 20 cos(12𝜁)) cosh(3𝜏) + (36 + 90cos (8𝜁))cosh (𝜏)
]

 

(1.54) 
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effects perturb it. First order, N = 1, solitons are extremely robust and can recover from 

most perturbations and propagate until their optical power reduces to the point that SPM 

can no longer efficiently occur. 

1.3.6 Stimulated Raman Scattering 

Within the silica medium, molecular vibrational modes exist with resonant absorption 

frequencies much lower than that of the light traveling through. A nonlinear scattering 

process involving the vibrational energy levels of the medium will result in the 

generation of new frequencies. This effect, known as Raman scattering, is most 

prominent at higher intensities where more photons can excite an electron to a short 

lived quantum virtual state. The relaxation of this electron can emit a photon with a 

different frequency depending on the energy state it relaxes to as shown in Figure 1.17. 

The process can be described as a photon with energy ℏ𝜔𝑝 scattering from a molecule 

at a lower energy ℏ𝜔𝑠 while the molecule makes the transition into a vibrational state 

with energy ℏ𝜔𝑣. 

 

Figure 1.17: Raman scattering showing electron transfer to a short lived virtual state and back to a 

molecular vibrational state. 

The above process generates a photon with lower frequency – a so-called Stokes shift. 

However it is possible for the opposite to occur, where an electron from a vibrational 

state is excited and relaxes back to the ground state, resulting in an increase in 

frequency known as an anti-Stokes shift. Generally, the anti-Stokes scattering is less 

efficient as most electrons are not in higher vibrational states. 

 ℏ𝜔𝑝 = ℏ𝜔𝑠 + ℏ𝜔𝑣 (1.55) 

ωp ωs 

Virtual state 

 

 

Vibrational states 

Ground state 



 

27 

 

 

Figure 1.18: Raman gain for fused silica [12]. This curve is related to the density of vibrational 

states of the molecule within the glass host. 

The Raman scattering of high intensity radiation in fused silica can generate coherent 

gain via stimulated emission from the virtual state. This effect is used at 

telecommunication wavelengths in optical fibres where energy pumped into the fibre at 

a frequency 13 THz higher, or ~90 nm lower in wavelength, than the 1550 nm signal 

wavelength, provides amplification by stimulated emission of the Raman scatter. The 

Raman gain profile for the glassy silica relative to the propagating frequency is shown 

in Figure 1.18. 

This coherent Raman gain is important when observing solitons. Due to the intensity of 

optical solitons and their broad frequency width, an interesting effect is observed where 

the higher frequency light in the soliton itself creates a Raman gain that the lower 

frequencies extract as increased power. This effect does not destroy the soliton, as they 

are remarkably stable against small perturbations, however, the whole soliton 

effectively moves to a lower frequency [13,14]. This is known as soliton self-frequency 

shift or Raman shifting, as the “blue” end light is absorbed and the gain enhances the 

“red” end. The speed of the shift to lower frequencies is dependent on the intensity of 

the soliton, where higher intensity solitons have an increased Raman gain and therefore 
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a faster shift. In silica, as the soliton loses power due to attenuation, the shift will slow 

and will become negligible before the pulse loses enough power to maintain its solitonic 

nature. 

1.4 Supercontinuum 

This section forms a literature review on supercontinuum generation discussing the 

articles relevant to this thesis as well as a general overview of the area. 

1.4.1 Discovery and History 

The invention of the laser and subsequent mode locking and pulse generation 

techniques in the 1960s expanded the world of optics to include the nonlinear effects 

described in section 1.3. These nonlinear effects were first observed in bulk materials 

and liquids, however, with the improvements to optical fibres that followed, these 

effects were soon observed within these waveguides. It was by using these effects that 

the first nonlinear broadband light sources were generated, first in bulk and then in fibre 

[15,16]. These results, while interesting, pale in comparison to the spectral broadening 

that was to be discovered. 

 

Figure 1.19: First recorded supercontinuum in MOF. Input bandwidth is shown dashed [1]. 

In 1999, Ranka et al. generated what was coined the first supercontinuum using a 

titanium sapphire laser and a length of MOF [1]. At this time, MOFs were a new field of 

study with endlessly single mode fibres and photonic band gap guiding [7,8] only being 

created in 1996. 

The customisability of MOF allowed for enhanced modal confinement of light resulting 

in higher nonlinearity as well as control of the fibre dispersion, allowing anomalous 

dispersion and solitons from a wide range of sources not possible in bulk materials or 
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standard waveguides. The ability for these strongly nonlinear fibres to generate octaves 

of light was novel and impressive and this was the beginning of a new field of study in 

what became known as supercontinuum generation. 

1.4.2 The Supercontinuum 

The supercontinuum quickly became a principal field of study in nonlinear optics. One 

half of the Nobel prize in physics, 2005, was given to Hall and Hänsch for their 

contributions to the development of laser-based precision spectroscopy, including the 

optical frequency comb technique that primarily uses a supercontinuum [17–19]. This is 

an indication of the popularity of this field and especially the speed at which it 

expanded. 

As easy as it was for supercontinua to be generated once discovered, it was much harder 

to understand the underlying physical processes that generated such broad sources of 

light. It is difficult to isolate the individual processes that contribute to the spectrum, as 

the wide range of inputs and outputs lead to complex structures and therefore difficulty 

isolating the relative contributions of the relevant nonlinear processes [2]. 

The key component to understanding these supercontinua has been the utilisation of 

numerical modelling. The most common situation of femtosecond regime pumping in 

the anomalous dispersion regime of the waveguide, generating the widest and most 

interesting continua, is examined here. 

When an input pulse of light, with a high peak power, short temporal duration, and a 

wavelength within the anomalous dispersion regime enters a MOF it will generate a 

supercontinuum. Initially the pulse will compress temporally, due to self-phase 

modulation, and will quickly generate a soliton. The strong intensity of light will also 

generate corresponding Stokes and anti-Stokes Raman peaks on either side of the input 

pulse. 

To fully understand the generation of this light it is important to have a good 

understanding of all the physics previously discussed in this chapter. Additionally, it is 

very helpful to make use of numerical simulation to highlight the effects under 

discussion. 
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1.4.3 Soliton Formation and Fission 

Figure 1.20 shows that the initial stage of pulse injection and propagation within the 

first few millimetres results in extreme spectral broadening that is relatively 

symmetrical around the input, and is coupled with a temporal compression. However, 

this simple broadening quickly becomes asymmetric with unique spectral peaks 

appearing. This early asymmetrical broadening is attributed to a process known as 

soliton fission. This was alluded to in section 1.3.4 but will be explained in more detail 

here.  

The soliton with an order of N above 1 will form, assuming sufficient input power, 

however, this soliton will rarely get to complete a full cycle due to the external 

perturbations such as Raman scattering and fibre imperfections. As such, the soliton 

will begin to shed fundamental order (N=1) solitons that are much more stable with 

their less complex evolution. It is usually assumed that by the end of the initial 

broadening process a N
th

 order soliton will have split into N fundamental solitons with 

varying power.  

1.4.4 Soliton Self-Raman Shift 

Fundamental solitons undergo self-Raman scattering and shift to longer wavelengths via 

Raman gain as outlined in 1.3.6. The first N=1 soliton to fission off has sufficient 

intensity and spectral width so that the “blue” higher frequency component provides 

coherent Raman gain to, and thus increases the intensity of, the lower frequency “red” 

end of the spectrum. As this process is dependent on both intensity and spectral width, 

the stronger solitons will self-shift to the “red” end spectrally at a greater rate, as evident 

in Figure 1.20 below. With the shift to longer wavelengths, the solitons’ propagation 

constants decrease, due to a lower group velocity, and hence the solitons begin to lag 

behind the rest of the continuum pulse that is propagating along the fibre. 

A typical laser pump wavelength in the anomalous dispersion regime of a MOF is 800 

nm and the resultant supercontinuum may extend to 1600 nm with this extreme 

broadening of the supercontinuum spectrum attributed to this Raman shift of soliton 

light. 
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1.4.5 Dispersive Wave 

It should be apparent at this point that a significant amount of light is generated on the 

short wavelength side of the pump, often in the normal dispersion regime. The creation 

of this light is due to perturbation of solitons by third and higher orders of dispersion 

[10]. This radiation had been called Cherenkov radiation [20], nonsolitonic radiation, or 

dispersive wave generation. This light is emitted at a frequency where the propagation 

constant matches that of the soliton. 

Similar to equation (1.25) the phase shift of the soliton radiation and the dispersive 

wave may be expressed in terms of propagation factors. The two phases at distance 𝑥 

after delay 𝑡 = 𝑥 𝑣𝑔⁄  are given by 

where 𝜔𝐷 and 𝜔𝑆 are the dispersive wave and soliton frequencies and 𝑣𝑔 is the group 

velocity of the soliton [10]. The last term in equation (1.57) is due to the nonlinear 

refraction of the soliton after the fission process (this is not easily measured 

experimentally). 

The dispersive wave is generated at 𝜔𝐷 such that 𝜙𝐷 = 𝜙𝑆. By taking a Taylor series 

expansion of 𝛽 around 𝜔𝑠 (as discussed in appendix 10.1) this can be simplified as 

 
𝜙𝑆 = 𝛽0𝑥 + 𝛽1𝑥(𝜔𝐷 − 𝜔𝑆) +

𝛽2

2
𝑥(𝜔𝐷 − 𝜔𝑆)2 + ⋯ − 𝜔𝐷

𝑥

𝑣𝑔
 

(1.58) 

so 
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(1.59) 

 𝜙𝐷 = 𝛽(𝜔𝐷)𝑥 − 𝜔𝐷

𝑥

𝑣𝑔
 (1.56) 
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Rearranging 
𝛽(𝜔𝑆) − 𝛽(𝜔𝑆) +

𝜔𝐷

𝑣𝑔
−

𝜔𝑆

𝑣𝑔
−

1

𝑣𝑔

(𝜔𝐷 − 𝜔𝑆) +
1

2
𝛾𝑃𝑆

=
𝛽2

2
𝑥(𝜔𝐷 − 𝜔𝑆)2 + ⋯ 

(1.60) 

Cancelling 

terms 

1

2
𝛾𝑃𝑆 =

𝛽2

2
𝑥(𝜔𝐷 − 𝜔𝑆)2 + ⋯ 

(1.61) 

Finally 
∑

𝛽𝑚(𝜔𝑆)

𝑚!

∞

  𝑚≥2

(𝜔𝐷 − 𝜔𝑆)𝑚 =
1

2
𝛾𝑃𝑆 

(1.62) 

This general form accounts for infinite orders of perturbation. As a simple example, 

equation (1.63) shows the simple solution where 𝛽2 > 0 and only the second order is 

considered 

It should be noted that, as the soliton undergoes self-Raman shift, 𝜔𝑆 changes and hence 

the Taylor series is expanded around a different point, changing all 𝛽𝑚 coefficients. 

Figure 1.20 shows an example of a dispersive wave generated in MOF using a 

simplified simulation to exaggerate the effect without interference from other nonlinear 

phenomena. 

 

𝜔𝐷 = √
𝛾𝑃𝑆

𝛽2
+ 𝜔𝑆 

(1.63) 
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Figure 1.20: Numerical simulation of dispersive wave generated from a soliton undergoing self-

Raman shift [2]. 

This process generates light of different wavelengths and accounts for the shift to longer 

“red” wavelengths. The generation of “blue” shifted light is discussed in the next 

section. 

1.4.6 Gravity-like Trapping 

How is the dispersive wave affected by the NIR solitons after it is generated? The light 

generated on the normal side of the MOF dispersion curve, while having been affected 

by standard nonlinear effects, cannot form a soliton as the normal dispersion is unable 

to be balanced by self -phase modulation. The light, however, still appears to shift to 

shorter wavelengths. This is due to a kind of cross phase modulation and has been the 

subject of significant debate in the past few years. Solitons in the anomalous dispersion 

regime create a wall that decreases in speed as the soliton shifts to longer wavelengths 

through self-Raman shift and the group index of the guiding mode increases. Any blue 

light that was travelling behind the soliton at a similar group index will be scattered 

from the interface and will be continually pushed to shorter wavelengths as the blue 

light cannot overcome the barrier potential created by the soliton [21–23]. 

As a result, the spread of the continuum light can be seen to be symmetrical around the 

group index of the EM mode in which the continuum is generated. 
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Figure 1.21: Numerical simulation (b) showing the effects between the dispersive wave and solitons 

in a typical MOF(a) after 1.5m of propagation with a 850 nm input pump [23]. 

Figure 1.21 shows this effect clearly in simulation. On the low frequency side, solitons 

have formed and are shifting to lower frequencies. At higher frequencies but matched in 

time are corresponding wave packets that have been shifted to increasing frequencies. 

As these interactions are dictated by the speed that the soliton is travelling, both the NIR 

and blue light must have matched group velocities. 

Such effects have been reported as early as 1987, particularly in some amazing work by 

Beaud et al [24] using standard telecommunications fibre of the period. Figure 1.22 and 

Figure 1.23 reproduce figures from that paper where there is a clear observation of the 

group velocity matching between red and blue light, where Beaud had ascribed the 

source of the blue to anti-Stokes scattering. The extent of this shift depends on both the 

distance travelled through the fibre and the initial input power. This arises from the rate 

of the soliton self-frequency shift since higher intensity solitons will have a greater 

Raman gain and shift in frequency more in the same spatial distance along the fibre 

compared to lower intensity solitons. In addition, the greater the interaction time, the 

further the soliton will shift, until the power is attenuated to a point where the Raman 

gain becomes insignificant. 



 

35 

 

 

Figure 1.22: Early reports of group index matching between Stokes and anti-Stokes pulses at 

varying lengths in fibre, (a) 6 m, (b) 12 m, (c) 17 m, (d) 50 m and (e) 150 m [24]. 

 

Figure 1.23: Frequency spectra of light propagating through 1km of fibre with input powers of (a) 

530 W, (b) 350 W, and (c) 175 W. 

Chen et al [25] was one of the first groups to start applying this work to the gravity-like 

trapping of dispersive waves and solitons discussed shown in Figure 1.24. This work 

looked at the edges of the generated supercontinuum and matched the limits to the 

group delay. 
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Figure 1.24: Group delay matching of continuum edges [25]. 

1.4.7 Four Wave Mixing 

As discussed in section 1.3.4, four wave mixing will only occur between closely spaced 

waves, as there is no phase matching between distant wavelengths in the waveguide. 

Relevant to the continuum generation, light frequencies generated are of high intensity 

and spectrally close so that phase is closely matched and wave mixing can occur. This 

has the effect of smoothing out the continuum of generated peaks, yielding a continuous 

spectrum with no gaps. That said, most reported supercontinua are plotted on a log 

intensity axis and give the impression of a uniform flat intensity, which is certainly not 

true. 

1.4.8 Numerical Simulation 

The scale of supercontinuum generation does not lend itself well to standard finite 

difference simulations. The size of the fibre and the small pixels needed to meet the 

Nyquist frequency condition for the short wavelengths of light mean that simulations of 

MOF take large amounts of memory and computation time. 

The propagation of light can be modelled with the following equation that is a time 

domain generalised nonlinear Schrödinger equation 

 𝜕𝐴

𝜕𝑧
+

𝛼

2
𝐴 − ∑

𝑖𝑘+1

𝑘!
𝛽𝑘

𝜕𝑘𝐴

𝜕𝑇𝑘
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= 𝑖𝛾 (1 + 𝑖𝜏𝑠ℎ𝑜𝑐𝑘

𝜕

𝜕𝑇
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× (𝐴(𝑧, 𝑡) ∫ 𝑅(𝑇′)|𝐴(𝑧, 𝑇 − 𝑇′)|2𝑑𝑇′
+∞

−∞
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(1.64) 
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An input pulse is defined by a complex temporal profile 𝐴(𝑧, 𝑡) such that the Fourier 

transform gives the spectral profile 𝐴̃(𝑧, 𝜔 − 𝜔0). The full derivation and varible list for 

equation (1.64) is available in Chapter 3 of Dudley and Taylor (2010) [26]. 

𝐴(𝑧, 𝑡) is determined as a function of position in the fibre by evaluating spectral effects 

over a small length step, then performing an inverse Fourier transform and then 

applying spectral effects over a small time step. When solving this, useful plots similar 

to the spectrogram in Figure 1.25 may be generated, where the wavelength intensity and 

the time offset are shown as a function of the propagation distance through the fibre. 

The split step Fourier method has become the de facto simulation method in 

supercontinuum generation as it allows a quasi one dimensional approach to the pulse 

propagation simulation. 

 

Figure 1.25: Numerical simulation of supercontinuum generation in MOF. The scale is log 

normalised to the peak power [2]. 

These simulations are very useful as they allow measurements of the temporal and 

spectral evolution of the pulse within the MOF to be compared to the theory. It is from 

these results that many of the ideas already discussed were created. 

1.5 Supercontinuum in Higher Order EM Modes 

While there is a large body of literature for supercontinuum generation as discussed in 

1.4.2, these papers will usually only consider the supercontinuum propagating in the 

fundamental EM mode of the MOF. This thesis is part of an investigation into the 

effects of generating supercontinuum within the Higher Order EM Modes (HOM) of 

optical fibre. This section will detail the current literature on this subject. 
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A significantly important paper in this field by Guobin  et al [9] actually has no mention 

of supercontinuum generation but instead details the EM modes of microstructured 

optical fibre. The full details and examples of this can be seen in sections 1.2 and 3. 

1.5.1 Initial Research 

One of the earliest investigations into the higher order EM modes was the work 

published by Duck et al [27] that showed interesting effects of the mode field output of 

MOF and how it affected the output wavelengths by varying the coupling into the MOF 

and changing the mode. In addition, they showed that, once higher order modes are 

excited, different wavelengths will appear to have varying orientations, as shown in 

Figure 1.26 

 

Figure 1.26: Figure 4 taken from Duck et al [27] showing spatial intensity data at a) 512 nm, b) 515 

nm, c) 517 nm, and d) 520 nm. 

While the experimental work in higher order mode excitation was only just beginning, 

simulations of the waveguide properties of MOF had been well researched [9] showing 

that for the most part MOF was an index guiding fibre where the modes resembled the 

traditional circular fibre modes shown in section 1.1.4, only with a slight energetic 

separation between degenerate modes. These early papers are notable for some of their 

initial findings showing extended UV generation [28] and the ability to manipulate the 

waveguide parameters by utilising the varying dispersion in higher order modes [29]. 
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Figure 1.27: Far field image of MOF supercontinuum generated UV light, clearly in a high order 

mode [28]. 

1.5.2 Current Research 

In the following years, a small number of groups investigated the effect of higher order 

modes in MOF with relation to supercontinuum generation. 

Cherif et al [30,31] performed  a number of experiments and simulations investigating 

the dispersion properties of various modes and the ability of such modes to modify the 

supercontinuum wavelength range. 
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Figure 1.28: Numerically calculated dispersion curves for numerous MOF modes [31]. 

 

Figure 1.29: Experimental supercontinuum generated in various fibre modes shown in Figure 

1.28 [31]. 

The variations in dispersion shown in Figure 1.28 appear to significantly modify the 

spectral content of the supercontinuum shown in Figure 1.29. Clearly the propagating 

mode of the continuum was having significant effects on the spectral generation and, as 

with most other supercontinuum generation research, numerical simulation serves as 

one of the easiest ways to understand the effects within the MOF. 

Poletti and Horak [32] also performed such numerical simulations of pulse propagation 

in the first seven modes of MOF as shown below. 
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Figure 1.30:Mode fields with effective index and dispersion calculated for a pitch of 2.7 µm and a 

hole diameter of 2.5 µm [32]. 

It should be noted that this paper calculates different infrared cut-off points than Cherif 

et al [31], but is consistent with the findings of this thesis in stating that the EM modes 

of MOF will continue to propagate well into the infrared, as the strong index step in the 

MOF means that the effective index needs to fall to approximately one before the mode 

is no longer guided. In essence, the mode will not be guided when the mode field is 

sufficiently large that the critical irradiance for soliton propagation is not met. This limit 

is not well defined for microstructured optical fibres in comparison to circular cross 

section step-index optical fibres, which have hard, and easily experimentally 

measurable, cut-off frequencies for the propagating modes. 
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Figure 1.31: Numerical simulations of light traveling through the fibre shown in Figure 1.30. Here 

the input pulse has been injected into various EM modes and the resulting output of each mode 

shown overlayed [32]. 

The numerical simulations shown in Figure 1.31 for various inputs into the fibre shown 

in Figure 1.30 predict the results of intermodal wave mixing through four wave mixing 

and intermodal cross phase modulation. Of specific interest is the top right panel of 

Figure 1.31, where the shortest wavelengths appear to be generated from what appears 

to be a dispersive wave in the M6 mode even when the pump is coupled entirely into the 

M1 mode. This result indicates that, in many cases where the experimentalist has 

assumed only the fundamental mode is contributing to the continuum, the shorter 

wavelengths may have been generated in higher order EM modes where the dispersion 

parameters are more conducive to making shorter wavelengths of light. 
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Figure 1.32: Left shows the input pulse of 50 fs and the resulting spectrum spread generated from 

propagating through the fundamental mode of the MOF. Right shows the dispersive waves 

generated in numerous higher order EM modes. Here the variations in wavelength due to mode are 

clearly seen [33]. 

This was further investigated experimentally by Karasawa and Tada [33] who looked at 

dispersive wave wavelengths of various modes shown in Figure 1.32 and showed that 

different modes generate different wavelengths. 
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1.5.3 The Scope of this Thesis 

It is clear that a number of factors contribute to changing the output of the continuum, 

all of which are primarily related to the change in guiding index due to higher order EM 

modes. The need to correlate more information about the supercontinuum, particularly 

the spectral emission with the spatial structure of the modes in order to definitively 

explain the physics behind the spectral features was discerned.  

The research effort was then directed to developing a new controllable spatio-spectral 

mapping technique, subsequently published by Legge et al [34,35]. An example of the 

output spatio-spectral map is shown in Figure 1.33, where spectral features have the 

spatial mode at that wavelength correlated. 

 

Figure 1.33: Spectral mode scan of a supercontinuum. Visible image of fibre output shown top 

right [35]. 

The investigation of dispersive wave trapping is especially evident in the higher order 

modes of MOF where the varying guiding index creates significant changes in the group 

index. This leads to the seemingly contradictory term of a sparse supercontinuum where 

the lower power coupling into HOMs can efficiently generate dispersive waves and 

solitons without creating the broad spectrum spread that usually hides these individual 

features as shown in Figure 1.34 [36–38]. 
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Figure 1.34: Sparse continuum generated in MOF [37]. 

This thesis explores all the discussed concepts of supercontinuum generation in 

multimode MOF. Chapter 2 details the experimental setup and the initial calibrations 

and measurements required to begin this work. Knowing that the dispersion of each 

mode is critical to the generation of supercontinua, Chapter 3 fully characterises the 

guiding index and vector solutions to EM modes propagating in the MOF through 

numerical simulation. 

Chapter 4 takes the initial observations of this experimental data and explores the 

results. Before this work, the exact spatial and spectral output of the supercontinuum 

had only been either qualitatively observed or measured using limited apparatus that 

distorted the results as shown in section 1.5.2. The resulting clarity of the data lends to 

the theory of splitting of degenerate EM modes into the six fold symmetry of the 

hexagonal MOF and the associated energy with each mode. 

Chapter 5 illuminates the recent theories on gravity like trapping of dispersive waves in 

MOF as discussed in section 1.4.6. Previously no direct measurement of this effect is 

observed in a supercontinuum as the spectral broadening occludes the individual effects. 

Through the generation of a sparse supercontinuum using higher order EM modes, this 

effect can be observed directly in the MOF from a standard Ti:S laser source. 

Chapter 6 further explores the mode field output of the MOF by analysing the 

polarisation of the generated supercontinuum. It was found that by using a linear 

polariser, all modes simulated in Chapter 3 could be identified.  
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2 Experimental 

This chapter details the general procedure and common equipment used throughout this 

thesis. It gives a solid overview of all experimental processes. This information is 

expanded upon for specific cases in later chapters. 

The following equipment is used to selectively couple the pump laser into HOMs of 

MOF for long periods of time, generate nonlinear effects within the MOF, and measure 

the spectral and spatial structure of the far field output of the MOF.  

2.1 Ultrafast Lasers 

High intensity light is required to study nonlinear effects and supercontinuum 

generation. Ultra-fast pulsed lasers meet this requirement by compressing their output 

into a short pulse of the order of 100 femtoseconds. The titanium sapphire laser is one 

of the most common and most versatile ways to generate this light. 

2.1.1 Titanium-Sapphire Laser 

The laser used in this thesis is a Spectra Physics Tsunami Titanium Sapphire (Ti:S) 

laser with a Ti
3+

:Al2O3 gain crystal. This is pumped by a Spectra Physics Millennium 

system consisting of a 808 nm diode array pumping a neodymium-doped yttrium 

vanadate (Nd:YVO4) glass host substrate contained in a cavity with a KTP intracavity 

frequency doubler. This system provides up to 10 W of 532 nm continuous wave (CW) 

light to excite the Ti:S crystal. 

The main Ti:S cavity is a system of 10 mirrors, 4 prisms and an Acousto-Optic 

Modulator (AOM) mounted on a central Invar bar. The optical layout for this cavity can 

be seen in Figure 2.1. The prisms create a chirp free cavity by compensating for the 

dispersion of the prisms themselves and the Ti:S crystal and also allow tuning of the 

laser wavelength across the gain bandwidth of the crystal by using a physical tuning slit 

between the prism pairs where the light is dispersed spatially in the vertical plane. 
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Figure 2.1: Cavity of Spectra Physics Ti:S mode locked laser [39]. 

The gain bandwidth of Ti:S is wide, ranging from  650 nm – 1100 nm, however, the set 

of optics used in the cavity restricted this bandwidth to 700 nm – 900 nm with a 

maximum laser efficiency at 800 nm. 

The laser operates in a pulsed state by mode locking, i.e., by creating a fixed phase 

relationship between many thousands of the longitudinal cavity modes within the laser, 

the phase locked modes sum coherently to generate a temporally short pulse. The Ti:S 

cavity combines two methods to achieve this mode locking. The first is inherent to the 

Ti:S crystal, small transient vibrations can cause the oscillating cavity modes to undergo 

SPM and generate the adjacent cavity mode frequencies. These oscillate and the 

coherent circulating intensity causes Kerr lensing in the gain medium so that the phase 

locked modes experience a better overlap with the pump beam, leading to a self-

sustaining mode-locked output. 

In addition, a standing wave AOM is positioned before the output mirror in order to 

generate a refractive index variation. By running the AOM at a frequency equal to half 

the longitudinal cavity mode spacing of the laser it will seed phase matched light into 

adjacent cavity modes and create a loss for non-phase-locked modes, ensuring the 

cavity continues to be mode-locked. 

The laser cavity has a preferential polarisation and emits a strong linear vertical 

polarisation. 

2.1.2 Measurement and Characterisation of Ti:S Laser. 

The output of the Ti:S laser was continually monitored in wavelength by a fibre coupled 

spectrometer that observed scattered light from the output beam splitter of the laser. 

This is a useful tool as it allows the measurement of the peak wavelength of the 

tuneable lasers, as well as the spectral width of the laser line. The degree of mode 

locking and resultant pulse output width could be estimated from this spectral width. 
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The spatial profile of the laser pulse was checked and complied with the manufacturer 

standards of a 2 mm Gaussian beam at 1 𝑒2⁄  with divergence of < 0.6 milliradian [39]. 

The diameter was confirmed with a scanning slit beam profiler shown in Figure 2.2. 

Profiles at multiple distances were taken to ensure the laser divergence was within 

specification. 

 

Figure 2.2: Intensity profile of the Ti:S output matching a 2 mm wide Gaussian beam. 

The laser repetition rate of 82 MHz was confirmed with a reverse biased fast photodiode 

and a 500 MHz TDS 520D Tektronix oscilloscope. 

The temporal width of the laser pulse was confirmed by a Spectra Physics PSCOUT HR 

optical autocorrelation device with PMT detector and a resolution of 50-3500 fs. 

 

Figure 2.3: Autocorrelation of Ti:S pulse. This has been broadened by the Faraday isolator. 
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Figure 2.4: FemtoSolve program written in LabVIEW to display the spectral output of the Ti:S 

from a spectrometer and the temporal width from the autocorrelator. 

The spectral components of the laser were measured with a repurposed fibre coupled 

OceanOptics S2000 spectrometer with an OceanOptics ADC1000-USB converter. Laser 

light was fed to this spectrometer through a multimode measurement fibre placed inside 

the Ti:S case that collected scattered light from the output coupler. A programme called 

FemtoSolve was developed in LabVIEW by the author to read both the spectrometer 

and the Autocorrelator and display the information and is shown in Figure 2.4. The Ti:S 

could then be easily tuned and optimised with this program. 

2.2 Microstructured Optical Fibre 

The nonlinear medium used in the project is pure fused silica. As mentioned in section 

1.3.5, light must exist in the anomalous dispersion region to be able to generate solitons. 

As the zero dispersion point for fused silica is 1300 nm and anomalous dispersion 



 

50 

 

occurs at higher wavelengths, it is the small core and the symmetry and dimensions of 

the air hole array in a MOF that dramatically lowers the waveguide dispersion, bringing 

the zero GVD point to ~750 nm and therefore bringing the anomalous region down to 

the 800 nm range matching the Ti:S laser emission so that the Ti:S laser can pump 

directly into the anomalous region and generate solitons, as shown in section 1.2. 

Four different MOFs are used through these experiments. Three fibres were 

commercially available with different zero GVD wavelengths and one was drawn 

specifically for research by the Optical Fibre Technology Centre. 

MOF is expensive, ~$1000 per meter. Care was taken to minimise waste of the fibre. As 

the fibre end is a structure with air gaps and struts less than 200 nm wide, sealing the 

fibre in a connector and polishing the end would only destroy the microstructure and fill 

the channels with glue. Instead, the fibre was held in free space and cleaved by hand 

when the end face needed refreshing. This free standing fibre was susceptible to a 

number of environmental issues including becoming dirty, the structural collapse of the 

microstructure at the end face and the destruction of the structure and core from melting 

the end with the input laser beam. 

Within the lab, the fibre can be imaged using a fibre splicer to check the cleave angle 

and quality. An optical microscope with a CCD camera and objective lens were used to 

observe the core structure of the MOF as shown in Figure 2.5. This aided in checking 

for damage and finding the orientation of the fibre. An example image is given in 

Figure 2.6. 

 

Figure 2.5: Photograph of fibre microscope capable of resolving some of the MOF structure. 
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Figure 2.6: Image of fibre taken with microscope shown in Figure 2.5. White light has been coupled 

in to the fibre to show transmission. Note this matches Figure 2.7 but is rotated by 30 degrees. 

In addition, detailed images were taken with a scanning electron microscope (SEM) to 

resolve the finest details of the MOFs (Figures 2.7-2.11 below). These SEM images are 

useful for seeing the true structure of the MOF and making sure the correct structure is 

used for simulating the modes and refractive indexes of each fibre. 

 

Figure 2.7: SEM of the core microstructure for the Thorlabs NL-2.8-850-02. The small ridge in the 

glass surface is due to the cleave propagation through the microstructure. 
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Figure 2.8: Magnified section of the supporting structure for the solid core shown in Figure 2.7. 

 

Figure 2.9: SEM of the core of the spun high birefringence MOF. Note that one of the holes has 

been contaminated, most likely with the graphene paste used to prepare the sample for imaging. 

 

Figure 2.10: SEM of Thorlabs NL-2.0-745-02. Note the defective hole at 9 o’clock on the left hand 

side that is likely due to a failed pressurisation while drawing the fibre. 
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Figure 2.11: SEM of NL-3.0-850. 

2.3 Optics 

The manipulation of light in this experiment used a host of commonly seen optical tools 

to direct and align and focus the light in a desired way. Most of these optomechanical 

devices are standard and require no special mention in this thesis. This section will deal 

with the more complicated parts of the optical setup and stability that are less common. 

All directing mirrors are first surface silver mirrors or ultra-fast chirp-free dielectric 

coated mirrors to minimise loss and dispersion of the pulse. 

2.3.1 Faraday Isolator 

The Faraday isolator is a unidirectional optical device used to prevent feedback into the 

laser. When coupling to the surface of the MOF, Fresnel reflections will couple back 

into the laser cavity. This causes seeding of new pulses in the cavity and destabilises the 

mode locking discussed in 2.1.1. The Faraday isolator overcomes this problem with an 

initial polarising filter aligned with the vertical laser output polarisation, then 

waveplates to rotate the polarisation of the light, one of which uses the Faraday effect, 

and finally passes out through a linear polariser. The rotation of the Faraday element is 

in the same direction regardless of propagation direction, therefore, any returning beam 

will be cross polarised and blocked by the polarising filter. 

This device is critical for the operation of a Ti:S laser when generating a 

supercontinuum using a MOF. 



 

54 

 

2.3.2 Beam Steering and Stabilisation 

Fine control of the beam coupling into the fibre focusing lens allows for much higher 

precision on the fibre end-face as larger movements on the input side of the lens only 

create small changes in the focussed beam position due to the “optical lever” effect of 

the lens. To achieve this result, the system was actively stabilised using a combination 

of piezo actuated gimbal mirrors with quadrant detectors providing the control 

feedback. 

Quadrant detectors allow the laser beam to be positioned with high resolution as they 

have high position sensitivity of a laser beam when illuminated. The detailed structure 

of the detector is shown in Figure 2.12 and the use in the specific application is outlined 

below. 

 

Figure 2.12: Diagram of a four quadrant silicon diode detector (QD7-5T) 

The position of the beam can be calculated using the following equations. 

 
𝑋 =

(𝐴 + 𝐷) − (𝐵 + 𝐶)

𝐴 + 𝐵 + 𝐶 + 𝐷
 

(2.1) 

 
𝑌 =

(𝐴 + 𝐵) − (𝐶 + 𝐷)

𝐴 + 𝐵 + 𝐶 + 𝐷
 

(2.2) 
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where 𝐴, 𝐵, 𝐶 and 𝐷 are the photo-currents generated from each quadrant of the 

detector in Figure 2.12 and 𝑋 and 𝑌 are the contrast between the left, right and up, 

down. These values are proportional to 𝑥0 and 𝑦0, where these are the central 

coordinates of the beam in equation (2.3) and the validity of this can be tested with a 

simple simulation.  

The input laser beam, as detailed in section 2.1.2, can be approximated as a 2-

dimensional Gaussian; 

where 𝜔0 is the beam width of the laser and for the Ti:S laser has a value of 525 𝜇𝑚. 

The Gaussian can be simulated as a 2D array and moved over the detector surface. The 

sum of the photocurrent from each quadrant detector indicates the total current and is a 

measure of the overall beam intensity. The calculated values of contrast from equations 

(2.1) and (2.2) were directly compared to the real position in equation (2.3) as the 2D 

array was “moved” across the surface with the results for this simulation shown in 

Figure 2.13. Code can be found in Section 10.3.3. A polynomial fit to the data is shown. 

This expression (2.4) is used in the control program outlined later to convert the output 

from the detectors into a real offset in metres with precision. 

 
𝐼(𝑥, 𝑦) = 𝐴𝑒

−(
(𝑥−𝑥0)2+(𝑦−𝑦0)2

𝜔0 
2 )

 
(2.3) 

 𝑥0 = [3.54 × 10−16 + 5.80𝑋 − 1.28 × 10−14𝑋2 − 2.62𝑋3 + 7.12

× 10−14𝑋4 + 22.3𝑋5 + 7.97 × 10−14𝑋6 + 38.5𝑋7

− 3.84 × 10−13𝑋8 + 25.2𝑋9 + 2.53

× 10−13𝑋10]10−4 

(2.4) 
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Figure 2.13: Simulated position of quadrant detectors. The blue line shows the simulated response. 

Red dots follow the polynomial fit to the data. 

When coupled with actuated mirror deflection, the information from the quadrant 

detectors can be used to create a feedback loop and control the position of the laser 

beam. This kind of beam-stabilising control arrangement is well established, and has 

been shown before in Grafström et al [40], and is usually used to correct for beam 

pointing wander in laser systems. It works for the control input to the fibre face for 

identical reasons.  
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Figure 2.14: Beam stabilisation and control setup. 

The setup shown in Figure 2.14 controls the beam by sampling at two points with each 

point having a separate quadrant detector. The detector B measures the position of the 

output beam which is controlled by mirror B. Detector A uses a lens to image the laser 

position at a virtual point on the top piezo mirror and controls its position with mirror A. 

This second point is not affected by adjustment of mirror B and hence decouples the 

points of control. 

In addition to controlling the beam position with high accuracy, this system also runs as 

a feedback loop to provide stabilisation of the beam from laser drift over long periods. 

The system is measured through a simple operational amplifier transducer board for 

both quadrant detectors and an analogue to digital converter to digitise the signal. The 

signal is processed by a LabVIEW program written by the author that uses equations 

(2.1), (2.2) and (2.4) to calculate the beam positions and then provide a correcting signal 

via USB to four high voltage drivers that actuate piezo-electric actuators connected to 

the two steering gimbal mirrors. The control interface for this program is shown in 

Figure 2.12. 

This control over the input beam position allowed extended experimental observations 

of stable supercontinua over periods of an hour. The position of the light coupled into 

the fibre as well as the angle of the light can be controlled by this setup in the following 

way. The system was aligned such that detector and mirror B controlled the position of 

the laser on the fibre coupling lens and detector and mirror A controlled the position at 

mirror A and as such controlled the angle of input into the fibre. 
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Figure 2.15: Implementation of computer program used to control and read beam positioning 

feedback loop. Note that the two graphs at the top right show the variation from the desired 

position in meters. This display is changing since a recent change has been made to one of the 

mirrors to affect the beam position. 

2.3.3 Fibre Coupling System 

The MOF was mounted on a rotation block allowing the laser to enter the fibre at any 

input angle. This block is held on a three-axis piezo micrometre stage (Thorlabs 

NanoMax MAX312D/M) that allowed precise positioning of the MOF core relative to 

the focussed laser beam input. The lens used was a single biconvex lens with a 2 mm 

focal length and antireflective coatings in the Ti:S output range. Figure 2.16 shows this 

setup. 
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Figure 2.16: Fibre launch system with lens, rotational holder and micrometre piezo three axis stage 

(the high voltage control for three axis stage is not shown). 

2.3.4 Apparatus Configuration 

The following diagram shows the latest variant of the optical arrangement of the 

supercontinuum source, and detection equipment, with the full piezo positional control. 

 

Figure 2.17: Generalised schematic for Supercontinuum measurement 

This system was advantageous as once the beam steering system before the MOF was 

set up it required only minimal adjustment to excite the required mode. The output of 

the MOF could be routed to numerous systems for analysis and measurement. Figure 

2.17 shows the setup with the reflective collimator and mode field scanner. 

2.3.5 Collimator and Mode Scanner 

The output from the MOF was collimated using an off axis parabolic mirror as shown in 

Figure 2.17. The collimated output of the MOF could be scanned over a 32 mm by 32 

mm range with a stage resolution of 1 µm, though this limit was rarely used as the raster 
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scans could take a long time and the finest structure in the far field output is of the order 

of 2-3 mm. The linear stages were controlled by stepper motors with a highly repeatable 

motion as shown in Figure 2.18. 

Each pixel of the scan was recorded as an average of ~25 shots to reduce noise. The 

integration time for each spectrometer was set prior to each scan at the brightest point of 

the output to avoid saturation. 

The spectrometers are important and full details of their configuration will be in the 

following section 2.4. The representation of this data is discussed in section 2.5.2. 

 

Figure 2.18: Bifurcated sample fibre affixed to scanning stage. Stepper motor controlled linear 

stages are doubled to give the required translation in x and y. 

The control of this system is automated through a LabVIEW program. The front panel 

control of this system can be seen in Figure 2.19. This software controls the position of 

the stepper motors used to record the spectrum from each spectrometer at each position 

over a rectangular grid of points. 



 

61 

 

 

Figure 2.19: MOF Mode Scanning software created in LabVIEW to control the stepper motors and 

automatically save the spectral data. 

2.3.6 Polariser and Screen 

The mode output could be observed simply with a screen of graph paper, or a webcam 

could be used to take photographs of the output. This setup was used to acquire many of 

the pictures taken using throughout this thesis, and was used to obtain polarisation 

results discussed in Chapter 6. 
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Figure 2.20: Polarisation investigation setup utilising fibre rotator, microscope objective, Glan–

Thompson prism in rotating mount and graph paper screen with a mounted webcam. 

2.4 Spectrometers 

The spectrometers used for this experiment were the Ocean Optics HR2000+ and an 

Ocean Optics NIRQuest. The light was sampled using an Ocean Optics bifurcated fibre, 

QBIF400-VIS-NIR, which had a 400 µm core and a transmission window from 400 nm 

– 2100 nm. 

The integration time for each spectrometer was set before each experiment to avoid 

saturation from the brightest part of any scan. Both spectrometers used can be seen 

setup in Figure 2.22. 

2.4.1 HR2000+ 

This spectrometer uses a 2048 pixel silicon array detector. The wavelength range is 200 

nm – 1100 nm with a 0.5 nm resolution. The responsivity of the spectrometer is good in 

the range of 400 nm – 900 nm, however, the device is not suited to looking at 

broadband light sources wider than this range, so the device was used in tandem with an 

infrared spectrometer. 

2.4.2 NIRQuest 

This spectrometer uses a 512 pixel InGaAs array detector that is chilled to -10° Celsius 

by a Peltier cooler. The spectrometer has a range from 900 nm – 1700 nm with a 3 nm 

resolution. 
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The spectrometer originally contained no input filter and suffered from second order 

interference from the shorter wavelength light in the continuum. This was rectified by 

installing a Semrock long pass filter BLP01-830R that has a cut-off at 845.3 nm as 

detailed in Figure 2.21. This removes almost all second order interference from the 

spectrometer with only a small amount of 800 nm – 850 nm light showing up past 1690 

nm on the spectrometer detector and far past any important spectral features of the 

supercontinuum output. 

 

Figure 2.21: Transmission measurement of Semrock BLP01-830R filter used to remove 2
nd

 order 

interference. The 50% transmission wavelength is 845.3 nm. 
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Figure 2.22: HR2000+ and NIRQuest Spectrometers connected to bifurcated sampling fibre for 

spectral mode field scanning measurements detailed in section 2.3.5. 

2.5 Processing 

The data measured produces an intensity spectrum for a 2D array of data points. This 

data is sent through a post-processing program that performs the following processes. 

2.5.1 Radiometric Calibration 

The integration time for each spectrometer is saved for every scan. This allows the use 

of equation (2.5) and a previously measured calibration (see section 10.2) to obtain a 

radiometric calibration of this data. This is useful as it removes the effect of spectral 

response from the measurement devices and sampling fibre. 

where 𝐼(𝜆0) is the radiometric intensity, C is the calibration factor, M is the measured 

spectral intensity, D is the dark current intensity and Ci and Mi are the calibration and 

measurement integration times respectively. The process for generating the calibration 

factor is detailed in appendix 10.2. The calibration process is integrated into the data 

visualisation software developed in section 2.5.2. 

 
𝐼(𝜆0) =

𝐶𝑖

𝑀𝑖
𝐶(𝜆0)[𝑀(𝜆0) − 𝐷(𝜆0)] 

(2.5) 
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2.5.2 Data Restructure and Visualisation 

The data is formatted into a 3 dimensional array with intensity as a function of pixel 

position in x, y and spectral wavelength, 𝐼(𝜆0, 𝑥, 𝑦). To observe the wide range of data 

created from each scan, a visualisation program was written by the author in Matlab 

with a graphical user interface to make it easy to explore the data. 

 

Figure 2.23: Mode Spectrum software used to explore the data generated in the mode scanning 

process specified in section 2.3.5. 

The function of the software in Figure 2.23 is as follows. The first graphical panel 

shows a two dimensional intensity profile for a chosen wavelength of the HR2000+ 

spectrometer, selected using the slider below it. The second panel is similar to the first, 

and can be toggled between the HR2000+ and the NIRQuest spectrometer with the 

buttons below. The third panel shows the spectrum, and is generated by clicking pixels 

on either of the previous panels. The spectrum is an average of all selected pixels 

(marked with dots on panels one and two) as well as a line indication of the position of 

the two dimensional profile in panels one and two. In addition, beneath this panel there 

is an option to select all pixels and clear all pixels as well as a calibration slider for the 

second spectrometer. In the rare case where the radiometric calibration fails, this can be 

used to normalise spectrum two so the overlap matches spectrum one. 
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Figure 2.24: This shows the spectrum integration feature for the Mode Spectrum software. 

Figure 2.23 shows the integration feature that was developed to look at the average 

mode field profile over a range of wavelengths. A second spectrum slider is added to 

panels one and two, and the average intensity of each pixel between those panels is 

calculated, allowing the full mode spectrum of a complete spectral peak to be resolved. 

Here, a near infrared soliton and a dispersive wave peak have been selected, as indicated 

by the two lines around each spectral peak in panel three. 

An average 25 by 25 pixel scan produces over 10  MB of this three dimensional data, 

and processing the results would be extremely difficult without this program. This 

allowed for easy processing of the data and the ability to find trends and matches in the 

spatial output of the MOF to the spectral output. The program included tools to export 

the data to an image or back into Matlab for further processing of the data presentation. 
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3 Modelling of Optical Modes in Microstructured Optical 

Fibres 

To understand the processes that govern light propagation within an optical fibre it is 

important to know its refraction and dispersion properties. As discussed in sections 

1.1.3 and 1.1.4 both the EM mode and the material properties combined to generate an 

effective refractive index. There is no simple way to experimentally measure this index 

over the wide bandwidth utilised in these experiments, instead, simulations are run to 

find both the allowed modes within the complex waveguide structure and their effective 

indices over a relevant range of wavelengths 

The material of all the MOFs is pure fused silica as no doping is required. The refractive 

index of this material can be approximated by the Sellmeier equation [41] 

where 𝜆0 is wavelength in microns. The effective index of the waveguide is dependent 

on a combination of the material dispersion and the waveguide dispersion. Each EM 

mode propagating within the waveguide has a different waveguide dispersion. 

3.1 Multipole Method 

To solve the allowed modes in the MOF used for this thesis, the multipole method and 

source model technique were initially used [42]. The multipole method has been used 

extensively for MOF and the literature indicates that this is both a valid technique and 

yields accurate results for the MOF simulations [42,43]. 

Initially the CUDOS MOF Utilities [44,45] were used, however the limitations of this 

code, namely the inability to simulate noncircular and asymmetrical holes in the MOF, 

meant that the fibres were remodelled using the Source-Model Technique Package 

(SMTP) [43] for Matlab that, as the name suggests, incorporates a source model, 

meaning it can accommodate any refractive index profile and geometry. 

 

𝑛(𝜆0) = √1 +
0.6961663𝜆0

2

𝜆0
2 − 0.06840432

+
0.4079426𝜆0

2

𝜆0
2 − 0.11624142

+
0.8974794𝜆0

2

𝜆0
2 − 9.8961612

 

(3.1) 
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3.2 Finite Element Frequency Domain Method 

In addition to the work and approach above, finite element frequency domain analysis 

was used as it was both; able to calculate refractive indexes over a large range and; 

much faster than the multipole method. 

This method, which solves the Helmholtz Equations in two dimensions using a 2D 

geometry frequency domain analysis, is appropriate, as the electric field varies 

sinusoidally throughout the waveguide. 

It should be noted that, in most of the MOF simulations, the rings further from the core 

have a negligible impact on the guiding properties of the fibre, so only the first ring of 

holes around the core is simulated to reduce complexity and simulation time.  

 

Figure 3.1: Computational boundaries overlayed on SEM of Thorlabs NL-2.8-850-02 fibre. Other 

fibres used similar grids based on SEM images. 

3.3 Curve Fitting 

Numerical results were fitted to this variation of the Herzberger and Salzberg equation 

 
𝑛(𝜆0) = 𝐴 + 𝐵𝜆0

2 + 𝐶𝜆0
4 + 𝐷𝜆0

6 +
𝐸

(𝜆0
2 − 𝐽)

+
𝐹

(𝜆0
2 − 𝐾)2

 
(3.2) 
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providing a good fit for mode transitions [46]. Of note, the coefficient J is usually kept 

at a low value, viz. 0.028 µm
2
, however it can be useful to move K to higher 

wavelengths to indicate a resonance in the infrared as, for some higher order modes, n 

falls to an effective index of one as wavelength increases. 

The units for the coefficients in equation (3.2) are the reciprocal of the corresponding 

wavelength measurement in microns. For example, coefficient B has units µm
-2

, 

however C is in µm
-4

 and coefficient E has units µm
2
. 

The fitting process used the GRG-Nonlinear solver package included with Microsoft 

EXCEL2010. The numerical derivatives were taken while solving to compare to the 

simulation results and coefficients were matched using a least squares fit weighted 

between derivatives. 

 

Figure 3.2: EXCEL spreadsheet showing fitted refractive index to numerical simulation. 

3.4 Results 

The following results show the simulated refractive index, group index, dispersion and 

intensity profile for each mode within a particular fibre structure. Results were obtained 

with Comsol Multiphysics and verified with SMTP. 

3.4.1 Thorlabs NL-2.8-850-02 

This is the primary fibre used in most of the experiments as it has a zero GVD 

wavelength close to the peak efficiency wavelength of the Ti:S laser. 
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This MOF has a hexagonal grid of silica with a pitch of 2.5 µm between 2.35 µm 

diameter holes and a missing central hole as observed in Figure 2.7. 

Figure 3.3 shows the typical x and y (transverse) cross sections of the electric fields 

associated with propagating modes within this fibre. Figure 3.4 and Figure 3.5 show the 

x-y cross section of the HE11 and TM01 modes. More complicated vector fields are 

harder to visualise on paper but are similar to those shown in Section 1.1.4.  
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Figure 3.3: Normalised electric field intensities √𝑬𝒙𝟐 + 𝑬𝒚𝟐 + 𝑬𝒛𝟐  (red), in Thorlabs NL-2.8-850-

02 MOF calculated at 800 nm. Mode labels are included in the bottom right of each image. Each 

image is 2 µm by 2 µm square with the interfaces between the silica and air holes shown as black 

lines. The direction of the electric field in the x-y plane is shown by the black arrows. 

HE11 TE01 

HE21 TM01 

EH11 HE31 
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Figure 3.4: HE11 mode showing the electric field in the x-z plane. Red lines indicate the edge of the 

core. 

 

Figure 3.5: TM01 mode showing the electric field in the x-z plane. Red lines indicate the edge of the 

core. 

Table 3.1: Fitting coefficients for the modes shown in Figure 3.3 to equation (3.2). The column 

labelled N is used to indicate the degeneracy number of each mode. 

N Mode A B C D E F J K 

2 HE11 1.34×10
0
 -3.52×10

-2
 -1.02×10

-4
 -3.18×10

-4
 2.93×10

-3
 2.83×10

+1
 1.05×10

-2
 1.57×10

1
 

1 TE01 1.14×10
0
 -8.30×10

-2
 -8.01×10

-5
 -7.36×10

-4
 2.93×10

-3
 8.49×10

+1
 1.05×10

-2
 1.65×10

1
 

2 HE21 1.31×10
0
 -6.60×10

-2
 4.05×10

-4
 -5.19×10

-4
 2.93×10

-3
 3.09×10

+1
 1.05×10

-2
 1.46×10

1
 

1 TM01 1.31×10
0
 -6.59×10

-2
 2.84×10

-4
 -4.00×10

-4
 2.93×10

-3
 3.18×10

+1
 1.05×10

-2
 1.51×10

1
 

2 EH11 1.26×10
0
 -1.08×10

-1
 1.84×10

-3
 -8.97×10

-4
 2.94×10

-3
 3.46×10

+1
 1.05×10

-2
 1.35×10

1
 

1 HE31 1.05×10
0
 -1.33×10

-1
 -1.35×10

-3
 -1.09×10

-3
 2.94×10

-3
 9.07×10

+1
 1.04×10

-2
 1.50×10

1
 

 

 



 

73 

 

Table 3.2: Zero Group Velocity Dispersion points. These are visible graphically in Figure 3.7. 

Mode HE11 TE01 HE21 TM01 EH11 HE31 

Zero 

GVD(nm) 

809.8 659.3 641.4 634.8 563.0 

1738.4 

564.2 

1666.7 

 

Each of these modes can be compared to the standard circular waveguide fibre modes 

shown in section 1.1.4. The primary differences include the splitting of previously 

degenerate modes due to the sharp dielectric interface. 

 

Figure 3.6: Graphed fits for the first six Thorlabs NL-2.8-850-02 modes. The refractive index is the 

lower group of curves; the group index is the higher group. Note that even though some of the 

degenerate modes look to have very similar refractive and group indices, the slight variations 

significantly affect the dispersion as shown in Figure 3.7. 
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Figure 3.7: Dispersion of each mode in Thorlabs NL-2.8-850-02. The zero GVD points for each 

mode are shown in Table 3.2. 

3.4.2 Thorlabs NL-2.0-745-02 

Physical parameters of this MOF are a hexagonal grid of silica with a pitch of 2.1 µm 

between 2 µm diameter holes and a missing central hole as observed in Figure 2.10. 

The electromagnetic mode structure is very similar to the previous fibre discussed in 

section 3.4.1 and as such the vector filed diagrams there should give sufficient 

illustration to these modes. The refractive index of these modes, however, do vary, as 

seen in the following tables and graphs. 
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Table 3.3: Fitting coefficients for the modes to equation (3.2). The column labelled N is used to 

indicate the degeneracy number of each mode. 

N Mode A B C D E F J K 

2 HE11 9.86×10
-1

 -8.93×10
-2

 -1.21×10
-3

 -7.39×10
-4

 2.93×10
-3

 1.52×10
2
 1.05×10

-2
 1.81×10

1
 

1 TE01 1.22×10
0
 -1.20×10

-1
 4.13×10

-3
 -1.31×10

-3
 2.94×10

-3
 4.18×10

1
 1.04×10

-2
 1.34×10

1
 

2 HE21 1.23×10
0
 -1.25×10

-1
 1.49×10

-3
 -1.12×10

-3
 2.95×10

-3
 3.34×10

1
 1.04×10

-2
 1.25×10

1
 

1 TM01 1.17×10
0
 -1.31×10

-1
 1.07×10

-3
 -4.43×10

-4
 2.94×10

-3
 6.00×10

1
 1.04×10

-2
 1.47×10

1
 

2 EH11 1.10×10
0
 -2.41×10

-1
 4.41×10

-3
 -4.79×10

-3
 2.95×10

-3
 2.84×10

1
 1.04×10

-2
 9.01×10

0
 

1 HE31 2.93×10
-1

 -4.07×10
-1

 -2.16×10
-2

 -1.05×10
-2

 2.96×10
-3

 1.05×10
2
 1.04×10

-2
 9.51×10

0
 

 

Table 3.4: Zero Group Velocity Dispersion points. These are visible graphically in Figure 3.9. 

Mode HE11 TE01 HE21 TM01 EH11 HE31 

Zero 

GVD(nm) 

750.6 610.4 591.4 585.1 

1633.3 

520.4 

1478.8 

516.9 

1423.5 

 

The calculated zero GVD point for the fundamental HE11 mode is 750.6 nm, close to the 

manufacturer estimation of 745 nm. 

It should also be noted that the EH11 and HE31 modes reach their cut-off wavelength 

before 1800 nm in Figure 3.8. This is shown as the point where the effective index falls 

to 1.1. Index values below 1.1 are insufficiently different from the air gap cladding 

around the solid core, so the mode does not propagate. 
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Figure 3.8: Graphed fits for the first six Thorlabs NL-2.0-745-02 modes. The refractive index is the 

lower group of curves; the group index is the higher group. 

 

Figure 3.9: Dispersion of each mode in Thorlabs NL-2.0-745-02. The zero GVD points for each 

mode are listed in Table 3.4. 
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3.4.3 Thorlabs NL-3.0-850 

Physical parameters of this MOF are a hexagonal grid of silica with a pitch of 3 µm 

between 2.8 µm diameter holes and a missing central hole as observed in Figure 2.11. 

The electromagnetic mode structure is very similar to the previous fibre discussed in 

section 3.4.1 and, as such, the vector filled diagrams there should give sufficient 

illustration to these modes. The refractive index of these modes, however, do vary, as 

seen in the following tables and graphs. 

Table 3.5: Fitting coefficients for the modes to equation (3.2). The column labelled N is used to 

indicate the degeneracy number of each mode. 

N Mode A B C D E F J K 

2 HE11 1.34×10
0
 -3.52×10

-2
 -1.02×10

-4
 -3.18×10

-4
 2.93×10

-3
 2.83×10

1
 1.05×10

-2
 1.57×10

1
 

1 TE01 1.14×10
0
 -8.30×10

-2
 -8.01×10

-5
 -7.36×10

-4
 2.93×10

-3
 8.49×10

1
 1.05×10

-2
 1.65×10

1
 

2 HE21 1.31×10
0
 -6.60×10

-2
 4.05×10

-4
 -5.19×10

-4
 2.93×10

-3
 3.09×10

1
 1.05×10

-2
 1.46×10

1
 

1 TM01 1.31×10
0
 -6.59×10

-2
 2.84×10

-4
 -4.00×10

-4
 2.93×10

-3
 3.18×10

1
 1.05×10

-2
 1.51×10

1
 

2 EH11 1.26×10
0
 -1.08×10

-1
 1.84×10

-3
 -8.97×10

-4
 2.94×10

-3
 3.46×10

1
 1.05×10

-2
 1.35×10

1
 

1 HE31 1.05×10
0
 -1.33×10

-1
 -1.35×10

-3
 -1.09×10

-3
 2.94×10

-3
 9.07×10

1
 1.04×10

-2
 1.50×10

1
 

 

Table 3.6: Zero Group Velocity Dispersion points. These are visible graphically in Figure 3.11 

Mode HE11 TE01 HE21 TM01 EH11 HE31 

Zero 

GVD(nm) 

868.0 712.5 695.7 688.7 609.9 607.8 
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Figure 3.10: Graphed fits for the first six Thorlabs NL-3.0-850 modes. The refractive index is the 

lower group of curves; the group index is the higher group. 

 

Figure 3.11: Dispersion of each mode in Thorlabs NL-3.0-850. The zero GVD points for each mode 

are listed in Table 3.6. 
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3.4.4 OFTC Spun High Birefringence Fibre 

The structure of this fibre breaks the pattern of the previous MOF investigated in this 

chapter. The structure can be seen in Figure 2.9. This was simulated by an elliptical ring 

of six circular air holes with varying radii positioned elliptically around a solid core. 

The birefringence of this fibre is useful, as it splits the degeneracy of all of the modes. 

The double HE11 mode degeneracy of the previous fibres can be seen as a split effective 

index curve in the long and short axis of the elliptical core. As such, the full vector 

mode notation (HE, EH, TE and TM) used in the previous fibre can be replaced with the 

LP notation as all propagating modes in this strongly birefringent fibre are linearly 

polarised. 

Each LP mode has two numbers indicating the azimuthal mode order l and the radial 

mode order m. Modes with an azimuthal order have a double degeneracy as the 

azimuthal intensity is dependent on cos (𝑙𝜙) and sin (𝑙𝜙), these are described as odd and 

even modes. In addition, each mode has a polarisation direction. These modes are 

notated as follows LPlm,v
*
 where v is the polarisation direction and the * indicates an odd 

mode. For example the first six modes of the following fibre are LP01,y, LP01,x, LP11,y, 

LP11,x, LP11,y
*
, LP11,x

*
. 

These modes can be split into fast and slow variants as should be clear in Figure 3.13 as 

the group index of all similar modes is lower for the modes with the electric field 

polarisation in the direction of the long axis. Here y is the longer vertical axis and x is 

the shorter horizontal axis, i.e. LP01,x and LP01,y are the fast and slow fundamental 

modes respectively. 
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Figure 3.12: Normalised electric field intensities √𝑬𝒙𝟐 + 𝑬𝒚𝟐 + 𝑬𝒛𝟐  (red), in the spun Hi-Bi MOF 

calculated at 800 nm. Mode labels are included in the bottom right of each image. Each image is 

3 µm by 3 µm square with the interfaces between the silica and air holes show as black lines. The 

direction of the electric field in the x-y plane is shown by the black arrows. 

LP01,y LP01,x
 

LP11,y 
LP11,x 

LP11,y
*
 LP11,x

*
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Table 3.7: Fitting coefficients for the modes to equation (3.2). The column labelled N is used to 

indicate the degeneracy number of each mode. 

N Mode A B C D E F J K 

1 LP01,y 1.29×10
0
 -4.05×10

-2
 -1.82×10

-4
 -4.03×10

-4
 2.93×10

-3
 4.22×10

1
 1.05×10

-2
 1.62×10

1
 

1 LP01,x
 

1.30×10
0
 -3.94×10

-2
 -2.49×10

-4
 -3.49×10

-4
 2.93×10

-3
 4.01×10

1
 1.05×10

-2
 1.64×10

1
 

1 LP11,y 1.29×10
0
 -5.91×10

-2
 5.77×10

-4
 -5.68×10

-4
 2.93×10

-3
 3.38×10

1
 1.05×10

-2
 1.47×10

1
 

1 LP11,x 1.31×10
0
 -5.81×10

-2
 5.13×10

-4
 -4.84×10

-4
 2.93×10

-3
 3.30×10

1
 1.05×10

-2
 1.51×10

1
 

1 LP11,y
*
 1.25×10

0
 -8.04×10

-2
 1.08×10

-3
 -7.55×10

-4
 2.94×10

-3
 4.14×10

1
 1.05×10

-2
 1.45×10

1
 

1 LP11,x
*
 1.12×10

0
 -9.48×10

-2
 -1.25×10

-4
 -7.27×10

-4
 2.93×10

-3
 9.04×10

1
 1.05×10

-2
 1.65×10

1
 

 

Table 3.8: Zero Group Velocity Dispersion points. These are visible graphically in Figure 3.14. 

Mode LP01,y LP01,x LP11,y LP11,x LP11,y
*
 LP11,x

*
 

Zero 

GVD(nm) 

886.5 865.6 745.2 734.7 681.7 675.1 

 

 

Figure 3.13: Graphed fits for the first six spun Hi-Bi fibre modes. The refractive index is the lower 

group of curves; the group index is the higher group. 
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Figure 3.14: Dispersion of each mode in the spun Hi-Bi fibre. The zero GVD points for each mode 

are listed in Table 3.8. 
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4 Observation of Supercontinuum Generation in Higher Order 

Modes of Microstructured Optical Fibre. 

This chapter details the results of observation of supercontinua in HOMs of MOF for 

the purpose of understanding the underlying physics of the wavelength shift of the 

dispersive wave. This was inspired by work done previously by Duck et al [27] 

discussed in section 1.5.1. 

4.1 Overview 

A suitably intense light source, when focussed onto a MOF and coupled into the 

fundamental mode of the MOF waveguide, will generate a supercontinuum if there is 

some component of the initial input radiation or nonlinearly broadened radiation in the 

anomalous dispersion regime of the MOF allowing solitons to form [2].  

This section of the thesis shows novel measurements on the spatial output of 

supercontinuum generated in MOF. The apparatus used and the measurements taken are 

the first of this kind and give insight into the complex electromagnetic mode dynamics 

that can exist in MOF as shown in Figure 4.1, where multimode nonlinear effects can be 

seen visibly when aligning a MOF for continuum generation. Sections 1.4 and 1.5 

provide the background theoretical explanation for this experimental chapter. 

 

Figure 4.1: Images of interesting supercontinuum generated in MOF showing the various colours 

generated in different fibre modes from ~800 nm light. 

Often the broadest continuum will occur when the maximum amount of power is 

coupled into the waveguide; hence, the fundamental mode is often used as it has the 

highest coupling efficiency. However, as shown in Chapter 3, the waveguide dispersion 

of MOF changes for each allowable mode, and for certain wavelength ranges the 
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fundamental mode will often have normal dispersion whereas the higher order modes 

may have anomalous dispersion. In these cases, it is often possible to generate a 

continuum by coupling into the higher order modes where solitons can form. For 

example in Figure 3.7 it can be seen that the fundamental HE11 mode is anomalous for 

wavelengths above 810 nm whereas the next TM01 mode is anomalous for wavelengths 

above 659 nm. As solitons can only form in anomalous dispersion, it was expected that 

pumping into this fibre in the 700 nm – 800 nm range would excite solitons in higher 

order modes and not in the fundamental mode as they would be unable to form under 

normal dispersion. 

In reality, when using a lens to couple to the MOF such in the setup described in 2.3.3, 

it is difficult not to couple into multiple EM modes of the MOF. The focussed beam 

waist of the laser on the fibre core will usually overlap the mode field area of numerous 

EM modes.  

These higher-order mode continuua have been studied in the past [28–31], however, the 

measurement of the continuum output was limited to basic spectral measurements and 

colour photographs. In the experiments outlined in this chapter, using the system 

described in 2.3.5, it is possible to observe all EM modes and measure the wavelengths 

generated. Every MOF is different, with some having complicated mode structures or 

degenerate modes. Some are elliptical and some are hexagonally symmetrical. 

Coupling between EM modes within the MOF seemed to be relatively minor except for 

when modes were closely degenerate in energy. Simulations shown in Chapter 3 

indicate that most MOF had no effective index matching between non-degenerate 

modes at any wavelength and hence there should be no allowed coupling between them 

as the EM field propagates in the waveguide. This becomes more complicated with the 

degenerate modes in the hexagonal core of the MOF as will be discussed. 

4.2 Results and Discussion 

Investigation of supercontinuum generation in the higher order EM modes within MOF 

has revealed unique spectral and spatial features [28,29] not observed for supercontinua 

in the fundamental EM mode. Continuing work examined the temporal variation 

between modes [47], the spectral variation between supercontinua generated in different 

EM modes [31,33], and EM mode variation within a single supercontinuum [34]. A 
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paper [48] investigated the inter-conversion between modes in a few-moded solid core 

step index fibre excited at 1045 nm and the possibility of energy interchange between 

these modes at 1120 nm. 

The Koronov and Cherif papers [29,31] detail the existence of a region between the zero 

group velocity dispersion (GVD) wavelengths for the fundamental mode and for the 

higher modes that will support soliton generation in only the higher order EM modes. 

This work investigates this 700 nm – 850 nm region with a technique that allows spatial 

and spectral characterisation of the supercontinuum light emitted at the output of the 

MOF. The ability to offset pump the higher order EM modes by precise direction of the 

input laser into the MOF is central to this work as detailed in Figure 4.2. The 700 nm – 

850 nm region allows for solitonic behaviour purely in higher modes while the group 

index differences will dictate the spectral characteristics of the resultant continuum [49]. 

This unique setup excites different EM modes by shifting the position and angle of the 

focussed beam across the fibre core with nanometre precision as detailed in sections 

2.3.2 and 2.3.3. This is shown schematically in Figure 4.2(a-c), where pumping in the 

centre of the core excites the fundamental mode shown in Figure 4.2(d) and pumping 

off axis excites higher order modes shown in Figure 4.2(e,f). There is evidence in 

Figure 4.2(e) of both the fundamental mode and the higher mode being excited by the 

laser at the input position shown in Figure 4.2(b) where the red dot is representative of 

the beam diameter. The data set recorded allows the spatial EM mode at each 

wavelength to be extracted and viewed. 
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Figure 4.2: Variation of integrated supercontinuum electromagnetic mode structures imaged with 

schematic of estimated laser beam position on MOF core face. Higher order modes (e) and (f) result 

from offset fibre inputs (b) and (c). (d-f) are CCD recorded images of the integrated 

supercontinuum at the output of the MOF. 

Very different supercontinuum spectra emerge from the MOF as the input beam 

position on the MOF core is altered. Figure 4.3 displays four measured spectra with the 

only difference being the position at which the laser beam strikes the input face of the 

MOF core. All other input parameters, the 200 fs pulse duration, the centre wavelength 

of 785 nm, and the 15 nJ pulse energy were fixed. The insets of each plot show the 

visible light output of the MOF for each case integrated by the CCD array over all 

responsive wavelengths. 

 

Figure 4.3: Spectral variation of output supercontinuum and electromagnetic mode structures with 

position for identical input pulse duration, power and wavelength. 

The striking differences between the spectra in Figure 4.3 indicate that different 

processes dominate in the fibre. Supercontinua generated through solitons propagating 

in higher order EM modes, as in Figure 4.3(b-d), exhibit evidence that the input energy 



 

87 

 

is coupling into lower order solitons, to produce dispersive waves and Raman self-

frequency shifted solitons [2] upon fission, resulting in discrete spectral features across 

the broadened spectrum and retaining the spatial mode properties. In contrast, the 

continuum generated by coupling into the fundamental EM mode, below the zero GVD 

wavelength, as shown in Figure 4.3(a), yields a spectrum broadened by non-solitonic 

third-order nonlinear processes, where all wavelengths of light produced occupy the 

fundamental EM mode. Generating a supercontinuum in the fundamental EM mode 

above the zero GVD wavelength, Figure 4.4 matches the expected, well 

documented [2,50], solitonic and third-order nonlinear process broadened output, with 

all wavelengths propagating in the fundamental EM mode. 

Figure 4.4 and Figure 4.5 display the emission spectrum in blue for the UV-Vis 

spectrometer and in green for the NIR spectrometer, with the spatial mode as measured 

at each of the wavelengths identified. The rich data set available from the experiment 

has a spatial result recorded for each pixel of the two spectrometer arrays between 300 

nm – 1600 nm. The spectrum recorded at each raster point was an average of at least 

656 million individual laser, and therefore supercontinuum, pulses. 

 

Figure 4.4: Measured spectrum and spatial mode properties of a SC generated in the fundamental 

mode of Thorlabs NL-2.8-850-02 MOF using a 15 nJ, 210 fs input pulse at 860 nm, 10 nm above the 

zero GVD wavelength. Inset is a visible camera image. The spectrum is representative of the broad 

continuous spectra characteristic of a fundamental EM mode generated SC in MOF. 
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Figure 4.5: Measured spectrum and spatial mode properties of a SC generated in the higher EM 

modes of Thorlabs NL-2.8-850-02 MOF using a 15 nJ, 210 fs input pulse at 784 nm, 66 nm below 

the fundamental EM mode zero GVD wavelength. Inset is a visible camera image. 

The spatial mode structure of higher order EM mode supercontinua in Figure 4.5 

reveals a previously undocumented spectral complexity with six distinct dispersive 

wave peaks ranging from 400 nm – 550 nm generated using an input pulse wavelength 

of 784 nm. Cristiani et al. [51] proposed that each dispersive wave peak present in a 

supercontinuum output corresponds to a different fission event of a higher order soliton 

excited by the input pulse. With this interpretation, the spectrum presented in Figure 4.5 

reveals that the multiple peak features are characteristic of dispersive waves emanating 

from fission of lower order, possibly n=2 solitons, occupying higher order EM modes. 

Furthermore, it was found that light in each spectral peak occupies a different, closely 

degenerate, higher order EM mode of the MOF as shown in Figure 4.6. 

Figure 4.4 and Figure 4.5 correlate well with the group index matching as shown in 

Figure 3.6, where the broadening of the fundamental and the higher order mode spread 

to equivalent points on the group index for the corresponding mode [49]. Further 

investigation into this is discussed in Chapter 5. 

The different relative rotational position of the mode intensity lobes are a measure of the 

alignment of those modes relative to the structure of the fibre. As the fibre has 

hexagonal symmetry, or near to it, the expectation is that the fibre should support modes 

exhibiting this underlying symmetry. A detailed investigation of the spatial mode of 



 

89 

 

identifiable peaks in the dispersive wave region matched the expected symmetry as 

shown in Figure 4.6. 

The discrete mode effective refractive indices are not expected to cross over in the 

800 nm – 1300 nm region so the coupling of light into the fundamental mode differs 

from Cheng [48] and is ascribed to the coupling coefficient for that mode based on the 

overlap between the input pump beam and the mode cross-section at launch.  

The two lobe nature of these modes indicates a linear polarisation form of either the 

TM01, TE01 or HE21 modes shown in Figure 3.3, or some combination of these modes. 

As both TM01 and TE01 modes are rotationally symmetric it is unlikely they will deviate 

significantly from the simulation due to fibre imperfections and will continue to be 

nondegenerate. However, the HE21 modes are not rotationally symmetric, and are 

affected by alignment with the hexagonal core and the perturbations of that hexagonal 

core shape arising from manufacturing imperfections and external bending of the fibre. 

These imperfections have most likely caused the light coupled into the HE21 mode to 

split into six variations of HE21 and HE21
*
 that are sufficiently degenerate to loosely 

couple between each other and yet propagate with slightly different propagation 

constants and optical power. This has caused the magnitude of the dispersive wave 

spectra, labelled (a) – (e) in Figure 4.6, to vary. 

The slightly larger mode dimensions in Figure 4.6(d-f) are the basis of the major axis 

postulate for these modes, while the slightly smaller dimensions of modes in Figure 

4.6(a-c) are consistent with the minor axis postulate. 

 

Figure 4.6: Measured dispersive wave spectrum with peaks (a)-(e), measured spatial mode of each 

identified peak and postulated orientation of mode within the MOF core. 

Note that these modes are not energetically degenerate. The higher order mode solitons 

are excited in discrete spatial orientations and, when undergoing fission, produce 
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dispersive waves spatially aligned to their initial mode. The author postulates that due to 

the imperfect fibre core geometry, that is, loss of hexagonal symmetry, the 

electromagnetic modes are not degenerate and thus the dispersive waves should appear 

at different energies. 

However, it would also be possible to explain the different shifts as due to variations in 

the power of the corresponding infrared solitons, as higher power solitons will shift to a 

longer wavelength in the infrared more rapidly, creating a greater shift in the trapped 

blue light as discussed in section 1.4.6. The two sets of three major and minor axis 

oriented modes overlap in wavelength, possibly due to the power in the individual 

modes. Further investigation into the polarisation of the EM modes in MOF is discussed 

in Chapter 6. 

4.3 Conclusions 

The figures included above graphically convey new details of spatial mode features in 

supercontinua generated in higher order EM modes in MOF that have not been 

measured before. Discrete spectral features are associated with symmetrical spatial 

patterns arising from the host fibre geometry, and suggest the electromagnetic mode 

pairing between the longer wavelength solitons and associated visible dispersive waves. 

These data should inform theoretical studies and modelling of soliton fission and 

dispersive wave generation. 
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5 The Sparse Supercontinuum. 

5.1 Overview 

As a full multiple-octave broad band supercontinuum results from the action of a 

number of frequency mixing and frequency generating χ
3
 nonlinear effects, it is often 

difficult to observe and experimentally validate any individual process, because the 

associated spectral detail is lost to the wave mixing and frequency broadening that are 

occurring simultaneously. Gorbach and Skryabin [22,23], Chen et al [25], Stone et al 

[52], and even as far back as Beaud et al and their work in telecoms fibre [24] have 

inferred the shift in the blue wavelength, or dispersive wave, side of the supercontinuum 

to shorter wavelengths by measuring the limiting spectral width of the continuum 

(section 1.4.6). These observations, however, necessarily include broadened and wave-

mixed components of the continuum.  

While in simulation it is possible to analyse the propagation of a pulse in detail, 

experientially this is not achievable. Observations are usually limited to a detailed 

measurement of the average of millions of input pulses of laser light and the resulting 

output pulses. However, what occurs within the fibre is somewhat hidden. By far the 

most common analysis of supercontinuum generation uses the variation of input 

parameters (often pulse power) on the same length of fibre. The supercontinuum 

produced is usually compared to a simulated split step Fourier propagation of a pulse 

through the fibre using the Taylor series expansion of the fibre propagation constant 

(see section 10.1) and the resulting simulated spectral envelope is shown to match 

roughly with the experimental data [2]. While this is a validation of the theoretical 

model, the model itself must combine all known theoretical processes that contribute to 

supercontinuum generation and it is difficult to test a single process, as any individual 

event is lost to the broadening and smoothing that gives that desired continuum. 

In this chapter, the confusing, competing effects have been avoided, and direct 

observation of changes to discrete features in the blue spectral region, associated with 

the Raman shift of solitons in the red side of the supercontinuum, has been recorded. 

This surprising and unique observation is of blue light, once generated, shifting in its 

wavelength and is the required experimental validation of the theoretical explanation for 
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the formation of, and limits to, the short wavelength side of a supercontinuum 

[22,23,53]. 

This section of the thesis shows experimental work with both hexagonal and elliptical 

core MOF that resolves the individual effects of soliton to visible nonlinear interactions 

within a supercontinuum generation by exciting a limited number of solitons. This novel 

approach is compared to recent theories [23] and is the first of its kind to directly 

observe these effects in a typical supercontinuum generation setup as opposed to 

indirectly looking at the bounding edges of the continuum or seeding visible light 

behind a single soliton. These results can hence be taken as experimental validation of 

the theory in isolation of competing, or occluding, effects. 

These results are achieved by spatial and spectral characterisation of the 

supercontinuum generated by the MOF through the generation and observation of 

spectrally sparse supercontinua. While this description may be at odds with the usual 

and stated definition of a supercontinuum, the ability to pump energy into and excite 

solitons in higher order electromagnetic modes (EMMs) within a micro-structured 

optical fibre allows the generation of low order solitons. When these solitons fission and 

self-Raman shift to longer wavelengths, they demonstrate the characteristic extreme 

broadening of the input pump light over multiple frequency octaves, but with a sparse 

and dispersed spectrum displaying a small number of discrete peaks [38,54], rather than 

a filled-in continuous supercontinuum. 

5.2 Method and Reasoning 

A supercontinuum was generated by a mode-locked titanium-doped sapphire 

femtosecond laser (Spectra Physics Tsunami) coupled into highly nonlinear MOF 

(Thorlabs NL-2.8-850-02 MOF and OFTC Spun Hi-Bi MOF).  

While a normal supercontinuum is a continuous spectral emitter over more than an 

octave in frequency, in order to observe interactions between the red-shifting solitons 

and the blue-shifting short wavelength side of the generated light, the continuum was 

deliberately tuned to be spectrally sparse, while still being strongly nonlinear. With this 

approach, the individual index matching effects may be observed, and are not lost in the 

general broadening effects that obscure the individual nonlinear processes in a standard 

supercontinuum. The desired approach to this discrete observation is to lower the 
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soliton order N, where the functional determination of N as a function of experimental 

parameters is described in Equation (5.1) [2,10]. 

Experimentally, most parameters are held relatively constant by the laser, in that the 

pulse temporal width T0, power P0, and angular frequency ω0 are stable within a few 

percent over time. The MOF’s nonlinear refractive index, n2(ω0), and the effective mode 

area, Aeff(ω0) are constant for a fixed input wavelength. The dispersion, β2, varies 

significantly with mode, however, and shifting to higher order modes will usually 

increase the overall dispersion of the fibre in the anomalous region as may be seen in 

Figure 3.7 and Figure 3.14. With fine-tuning of the coupling afforded by the piezo-

electric controls and the correct laser power, the soliton order can be easily reduced to 2 

or 3 in a higher order EMM where the increased dispersion gives a lower N while 

keeping the high intensity P0 required for other nonlinear effects. 

5.3 Results and Discussion 

The group index of the propagating modes within the fibre was calculated using SMTP 

[43] and used to match the interaction between the blue light and the solitons. 

 

Figure 5.1: Sparse supercontinuum generated in 0.6 m of Thorlabs NL-2.8-850-02 MOF from the 

averaged propagation of 100 kW 180 fs Ti:S pulses at 780 nm. Inserts show (a) visible camera 

image of supercontinuum, (b) modelled mode intensity profiles at 800 nm for the fundamental and 

the 2
nd

 order mode and (c) an electron micrograph of the 2.8 micron average diameter MOF core. 

 
𝑁2 =

𝑇0
2𝑃0𝜔0𝑛2(𝜔0)

|𝛽2|𝑐𝐴𝑒𝑓𝑓(𝜔0)
 

(5.1) 
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Figure 5.1 shows a continuum for one of the industry-standard MOFs (NKT Photonics, 

Denmark, sourced through ThorLabs) used for nonlinear effects and creating a broad 

continuum when energy is coupled into the fundamental EM mode. When coupling 

light into this fibre it is very easy to couple into multiple EMMs and often the more 

extreme wavelengths on the blue side of the continuum are observed to occupy these 

higher order modes [54]. The measured spectral changes of a MOF with length of fibre 

shows that the blue light evident in Figure 5.2(a) at ~480 nm shifts in wavelength to 

shorter values shown at ~400 nm in Figure 5.2(b) as it progresses through an additional 

900 mm of fibre. This is an 80 nm shift in wavelength over less than 1 m of propagation 

through silica. Confirmation of this light being in a higher order EM mode is obtained 

from observation of the far field mode output at the corresponding wavelengths using 

the experimental apparatus in section 2.3.5.  

Interpreting the theories for this shift in the blue light [22,53] requires that both the blue 

and the soliton spectral peaks stay at the same group velocity even as the solitons self-

Raman shift to longer wavelengths. The group refractive indices plotted and the guiding 

lines shown in  

Figure 5.1 clearly show the values of the group indices match for the blue light (480 

nm) and the solitonic radiation in the NIR (1100 nm) for the higher order EM mode (red 

curve) and not for the fundamental EM modes (green curve).  
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Figure 5.2: Spectrum of a sparse continuum generated in the Spun High Birefringent MOF from 

the averaged propagation of 100 kW 180 fs Ti:S pulses at 780 nm through 0.1 m (a) and 1 m (b) of 

fibre in the 2nd order EMM (group index shown in red) with a low coupling efficiency. The 

reduced length shortens the interaction time and reduces the redshift and blueshift of the solitons 

and the blue light. Inserts show (c) an electron micrograph of the MOF core; (d) the measured far 

field mode intensity of the MOF output of (a) at 480 nm; (e) visible camera image of 

supercontinuum and; (f) and; (g) show the far field output of the long fibre at 395 nm and 1085 nm 

respectively, where the different spatial size is as a result of the fibre numerical aperture at each 

wavelength. 

It was found that moving from the Thorlabs MOF in Figure 5.1 to the OFTC MOF in 

Figure 5.2 with a slightly larger core, and hence lower nonlinear index, removed the 

contribution of some nonlinear effects, most importantly four wave mixing, and helped 

reduce the soliton order. This is clearly observable in the long wavelength side of the 
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spectrum shown in Figure 5.2(b). Here a series of solitonic shaped spectral peaks are 

clearly defined. All of these solitons occupy the same EMM in this birefringent fibre. 

The blue side of the continua in Figure 5.2(b) shows a seemingly complex series of 

strong peaks, all of which are propagating in the same EMM as the solitons. Most of 

these peaks can be shown to be matched in their group velocities to respective solitons 

in the near infrared as can be seen by the indicating lines on the spectrum and the 

overlaid group index for that mode. For the first time the direct interaction of a soliton 

and corresponding trapped blue light has been observed in MOF from a femtosecond 

pulsed laser typically used in supercontinuum generation with no pre-generation of 

solitons or lagging blue light [22,23]. 

As these interactions take time, the longer the fibre, the further both the wavelengths of 

the solitons and the blue light will be able to shift from the pump wavelength. However, 

the group index matching should be observable at all points in the fibre. This was tested 

by cutting back the fibre shown in Figure 5.2(b) to only 0.1 m, as shown in Figure 

5.2(a), resulting in the simpler continuum seen. Due to the length, and associated ~500 

ps transit time along the fibre, there has not been sufficient time for the different 

solitons to separate spectrally from each other, however, they do appear to be nearly 

half way along the shift to the longer wavelengths seen in Figure 5.2(b). In Figure 5.2(a) 

the discrete blue light peaks appear at longer wavelengths closer to the pump as well as 

in a clustered group compared to the shorter dispersed peaks in Figure 5.2(a). Checking 

the group index of this mode and the observable solitons again shows a correlation, as 

can be seen by the overlaid lines. The wavelengths are not as short on the blue side as in 

the longer length of fibre, as the NIR solitons are yet to Raman shift to longer 

wavelengths. 

The shifting of the blue light to shorter wavelengths can be attributed to intra-pulse 

four-wave mixing [21,23] as the fibre dispersion alters due to the nonlinear interaction 

of the soliton and media, creating an efficient phase matching process within the pulse. 

As the blue light is pushed to shorter wavelengths, the limit of the waveguide material 

begins to dominate and the group index increases dramatically as the 380 nm absorption 

band of silica is approached. Thus, it becomes very difficult to shift the blue light to 

wavelengths below 400 nm, as the steepening group index curve causes the bands of 

blue light to cluster to this limit. Most published supercontinua generated in uniform 
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fibres have this edge evident in the spectrum. There has to be a much greater increase in 

the NIR Raman shifted soliton wavelength to effectively index match to a much smaller 

wavelength shift to blue, unless the waveguide is manipulated by tapering.  

5.4 Conclusions 

The clear experimental results presented in this chapter demonstrably support the 

theoretical framework of Gorbach and Skyrabin [22,23] with the clear group index 

match of the Raman shifted NIR soliton peak wavelength and the shifting blue 

wavelengths in uniform fibre. By utilising the dispersion properties of higher order 

electro-magnetic modes in micro-structured optical fibre, these very low order solitons 

generated in a spectrally sparse continuum allow the definitive correlation of the soliton 

with its index matched, and shifting, blue light without the obscuration of nonlinear 

wave-mixing effects. This is the first discrete measurement of this effect in the 

femtosecond pulsed regime as opposed to an inferred result from the limiting spectral 

boundaries of the continuum.  
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6 Polarisation Study 

6.1 Overview 

The polarisation state of the light output from the MOF can be measured to yield 

information on the efficiency with which light is coupled to a particular mode within the 

fibre. The discussion in section 1.1.4 on the allowed waveguide modes of the fibre, as 

well as the MOF mode simulation in Chapter 3, are essential background for this 

section, as the linearly polarised input pump light has to couple to a set of the allowed 

waveguide modes. The output polarisation state must be interpreted following analysis 

of what the measurement tool used actually does to the state. 

6.2  Experimental and method 

Based on the knowledge of the EM modes propagating in the fibre, an understanding of 

the likely polarisation of the output emerges as the far field emission is generated by the 

mode oscillations on the end surface of the fibre. In fact, with a tool as simple as a linear 

polariser, it becomes possible to identify various EM modes based on their field shape 

with respect to the polarisation angle and the direction of rotation. 

To visualise this, the modes shown in Figure 3.3 can be imagined to propagate out in a 

conical shape matching the numerical aperture of the fibre. The polarisation of this 

output is considered linear with some spatial electrical field pattern. 

From the Thorlabs hexagonal type MOF, the four degenerate modes can be identified 

with a linear polariser. The HE modes will rotate against the rotation of the polariser 

and the TM and TE modes go with the rotation of the polariser. To distinguish between 

the two HE and TM TE modes the orientation of the dark null is either with or against 

the direction of polarisation. 

When observing the vector mode solutions such as TE01, TM01 HE21 and HE21
*
 through 

a linear polariser, they appear as the LP11 mode as expected. Even though all these 

modes have similar spatial intensities, they can be differentiated as shown in Figure 6.1. 
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Figure 6.1: Top row shows TM01, TE01, HE21 and HE21
*
 from left to right. Arrows indicate the 

direction of the electric filed polarisation. The bottom row shows the result of placing a linear 

polariser in the horizontal direction on each of these modes. If the polariser is rotated the resulting 

fields from the TE and TM modes will rotate with the polariser while the HE fields will rotate in 

the opposite direction. In this manner, all four modes can be identified. 

This effect applies equally when these modes are split degenerately and is applicable to 

the hexagonal MOF used in this thesis. Figure 6.2 shows the effect of linearly polarising 

modes within one of these hexagonal MOF. As expected the results mimic the LP mode 

structure observed in birefringent optical fibres and as shown in Figure 6.1 and can be 

used to distinguish modes that in their non-polarised states have near identical mode 

field profile intensities. 

 

Figure 6.2: This is the TE01 mode form Figure 3.3 on the left and the same mode with a horizontal 

linear polariser applied on the right. 
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Figure 6.3: Experimental arrangements used to investigate the polarised supercontinuum output 

from the MOF. The diffraction grating and the prisms were used in an attempt to spectrally resolve 

the continuum, however, they were found to inevitably tamper with the polarisation state. 

Experimental setups shown in Figure 6.3 were used to observe the polarised 

supercontinuum output. One disadvantage of using a prism or grating to observe the 

output of the supercontinuum is that each device will modify the polarisation of the 

resultant light. Gratings, in particular, have varying reflection coefficients in the parallel 

and perpendicular plane as seen in Figure 6.4 as well as a sine dependent dispersion.  
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Figure 6.4: An example of the P and S plane polarisation reflections from a Richardson Gratings 

ruled reflection grating [55]. 

As prisms are usually used with angles of incidence of more than 60 degrees, the first 

surface external reflection is different in the parallel and perpendicular planes, as is the 

internal reflection for the constant deviation prism and also the exit face transmission 

for both prisms used. Of course, the prism dispersion comes from the prism material 

refractive index. In addition to these methods, the polarisation state was also 

investigated using a quarter wave plate polarimeter, however, these devices do not work 

well with broad light sources as the quarter wave plate is only useful over a limited 

bandwidth and they are not well suited to rapidly changing polarisation states. The 

results shown in this chapter are all taken with the setup in Figure 6.5, using a Glan-

Thompson polariser and not pursuing the detailed spectral information. 

 

Figure 6.5: Simple polarisation state measurement. 
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6.3 Results and discussion 

 

Figure 6.6: Image of MOF supercontinuum output in higher order mode without a linear polariser 

(left) and with a horizontal linear polariser (right). 

In Figure 6.6 a typical supercontinuum is generated in a second order mode of NL-2.8-

850-02 MOF and collimated using a microscope objective onto a screen. A variation in 

the intensity of this mode structure when a linear polariser was placed before the screen 

can be seen with stronger lobes at the top and bottom of the previously evenly 

distributed circular mode. This matches the effect shown in Figure 6.2. As discussed in 

Chapter 4, it is difficult to excite a single pure higher order mode and, as such, the 

resultant output is usually a combination of degenerate or closely degenerate modes. 

The propagation of multiple modes creates a problem when using this method to 

identify them. For example if TM01 and TE01 were simultaneously propagating within 

the fibre, then the linear polariser would still display the original circular pattern, 

assuming a similar intensity and colour. 
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Figure 6.7: Images of HE11 TM01 TE01 and HE21 modes through a linear polariser. Polarisation 

direction is indicated by arrows on top row. Each image is on 1 mm graph paper with a 700 nm 

short pass filter to remove the pump wavelength. 

Figure 6.7 shows experimental measurements of the fundamental and the various 

second order EM modes in Thorlabs NL-2.8-850-02 fibre. The HE11, TM01, TE01 and 

HE21 modes can be clearly identified using the method discussed in section 6.2. It will 

be helpful to the reader to refer back to section 3.4.1, specifically Figure 3.3 to 

understand how these images are analysed. 

The first row in Figure 6.7 clearly corresponds to a HE11 fundamental mode. The 

supercontinuum is generating a dispersive wave at visible red wavelengths. It can be 
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seen that this mode is polarised as is expected from the linear polarisation input from 

the laser. 

The second row shows a supercontinuum generating blue wavelengths in a higher order 

mode. The two lobes of this mode when polarised are in the same axis of the linear 

polariser and rotate in the same direction as the linear polariser is rotated. This 

corresponds to a TM01 mode. 

The third row shows a supercontinuum generating green wavelengths in a higher order 

mode. Similar to the previous mode, the linear polarisation of this mode generates two 

lobes, however, these lobes are perpendicular to the linear polariser axis. Again, these 

lobes rotate in the same direction as rotation of the linear polariser is rotated. This 

corresponds to a TE01 mode in agreement with Figure 6.2 

The fourth row shows a much weaker signal with wavelengths generated in the yellow-

green in a higher order mode. This mode, while still a two lobe mode like the TE01 and 

TM01 modes, does not follow the same clear pattern with lobes aligned with the 

polarisation direction. Instead, the lobes rotate in the opposite direction as the linear 

polariser is rotated. This is characteristic of a HE21 mode. 

 

Figure 6.8: Laser coupling position used to excite HE11, TM01, TE01, and HE21 modes, respectively, 

on the core of the Thorlabs NL-2.8-850-02 MOF. Each diagram is 2 µm by 2 µm. 

Each mode excited here was achieved by positioning of the laser focal waist onto the 

surface of the MOF and rotating the polarisation direction of the laser relative to the 

fibre, as indicated in Figure 6.8. It was found when generating these results that the 

HE21 modes were much harder to excite than the TM01 and TE01 modes even though 

they are of similar profiles. 

The work done here is complementary to the observations seen in Chapter 4, 

specifically the work on the mode variation in the spectral output of the MOF shown in 

Figure 4.6. This work begins to unveil the shroud of the exact modes seen here and their 
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degeneracy. It is hypothesised based on the behaviour of the HE21 mode that the peaks 

seen are indeed travelling within this mode and that, contrary to the simplified 

simulation, the fibre itself has numerous degenerate modes here based on the symmetry 

of the fibre and the imperfections to the hexagonal core. 

 

Figure 6.9: Schematic of two mode field scanner arrangements with polariser. (a) Both the 

polariser and fibre are mounted on the x-y translation stage and multiple scans can be taken with 

varying polarisation angles while acquiring spectral information. (b) This arrangement will allow 

coarse spectrally resolved mode visualisation on a screen placed at the Rowland circle of the 

grating.  

Figure 6.9(a) shows a modification of the mode field scanner from section 2.3.5 that 

could be used to further investigate these polarisation effects. Each scan can be done 

without the polariser and then with the linear polariser at different angles. This setup is 

free from the problems with the previous spectrally resolved methods discussed in 

section 6.2 as, although there is a phase shift in the reflection off the metal surface, this 

poses no real change to the output of the linear polariser. In addition, the multimode 

detection fibre significantly scrambles the sampled light, removing any polarisation 

dependence of the spectrometers themselves. 

Figure 6.9(b) shows an alternative option where the diffraction grating is used with a 

polariser, however, in this case, the polarisation is static in the p plane of reflection and 

the MOF is rotated to generate the varying field patterns that will be spectrally 

dispersed on the Rowland circle. This method has issues, as the spectrally close modes 

will overlap whereas the mode field scanner avoids this issue. 

In addition to this, ideal coupling into select modes could be achieved using a phase 

mask or spatial light modulator. This would remove the cross coupling limitations that 

are inherent to the focussed beam excitation shown in Figure 6.8. 
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6.4 Conclusions 

In this chapter, a method for distinguishing between EM modes with similar spatial 

profiles with a linear polariser was proposed and experimentally validated by observing 

the first four experimental modes in hexagonal MOF. The results show a validation of 

the mode simulations performed in Chapter 3. In addition, they give insight into this as 

a further technique for exploring the output of supercontinuum in higher order modes of 

MOF. 

The results also inform that the likely mode of propagation for the dispersive wave 

discussed in Chapter 4 is indeed the HE21 mode. A method is described that could 

further illuminate the polarisation states and electromagnetic modes of these previous 

results. 

The experimental setup used in Chapters 4 and 5 could not resolve information on the 

polarisation of the input modes, however, the experimental methods and analysis 

techniques described in this chapter could be used to improve previous experiments. 
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7 Conclusions and Further Work 

This thesis primarily observed and characterised supercontinuum generation within 

multimode MOF. Numerous novel experimental techniques have been developed and 

utilised through this work to both create and measure the generated supercontinua. The 

MOF used has been extensively characterised in all EM modes through simulation and 

explored experimentally. 

A complex experimental setup evolved over the duration of this project with the Ti:S 

laser and numerous MOFs subjected to numerous iterations and improvements in 

similar experiments until adequate detail could be resolved. The system involved the 

operation of complex lasers, optical and mechanical components, electrical hardware 

systems and significant software control design and implementation to achieve the final 

results presented here. 

The data generated has illuminated new experimental observations in the form of higher 

order mode structure in the dispersive wave of a supercontinuum. In hexagonal MOF it 

was found that discrete spectral peaks in the dispersive wave of the supercontinuum 

were associated with electromagnetic modes aligned to the six axes of the fibre core. 

The small wavelength difference between these modes was attributed to degeneracy 

splitting of the HE21 and HE21
*
 modes due to imperfections in the hexagonal core 

structure. 

In addition, the generation of supercontinuum in these fibre modes with altered 

dispersion and mode field area lead to the generation of supercontinua with a small 

number of solitons compared to that generated in the fundamental with the same light 

intensity. The generated spectra were named the sparse supercontinua and gave insight 

into the inner workings behind one of the newer nonlinear effects to gain significant 

interest since the discovery of supercontinuum generation, the blue light trapping from 

NIR solitons. This effect, responsible for the extreme spectral broadening and continued 

shift of the blue side of the continuum as proposed by the theoretical framework of 

Gorbach and Skyrabin [22,23] is for the first time directly observed between individual 

solitons and shorter wavelength pulses in a supercontinuum. This experimental 

observation adds significant weight to these theories that have previously only been 

confirmed in supercontinuum generation by indirect observation of the spectral limits. 
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The MOF themselves have been fully explored in their waveguide capabilities with 

simulation results showing the full vector mode analysis of the fibre modes and the 

resulting refractive index, group index and dispersion for each of these modes. These 

results were confirmed both with finite element frequency analysis and source-model 

numerical techniques. 

By using a unique technique of observing the rotation of linearly polarised EM mode far 

field outputs, it was found that full vector modes could be identified in fibre. These 

modes were observed through analysis of the output of the MOF and the identification 

of the expected HE11, TE01, TM01 and HE21 propagating modes are readily observed in 

hexagonal core fibre. These preliminary results show the potential of further 

enhancements to the measurement of the mode scanner as the addition of polarisation 

information allows the closely degenerate EM modes with similar mode field profiles to 

be resolved experimentally. 

This thesis adds novel scientific knowledge in the fields of supercontinuum generation, 

nonlinear optics and higher order electromagnetic modes in microstructured optical 

fibres. Numerous experimental measurements, calibrations, numerical simulations and 

data analysis have been performed in the pursuit of further and deeper insight into the 

reasons for, and the physics behind, the spectral content of supercontinua emerging 

from MOF. Some of the results have been published and are now in literature, 

presentations have been made at international conferences as detailed in Chapter 9. It is 

anticipated one further publication on the polarisation study will be forthcoming.  
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9.4 Low Order Solitons in Higher Order Electromagnetic Modes of Photonic Crystal Fibre  

 

  



 

130 

 

 

  



 

131 

 

 

  



 

132 

 

9.5 Higher-Order Electromagnetic Mode Solitons Illuminate Theory  
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9.6 Sparse Supercontinuum with Low Order Solitons in Higher Order Electromagnetic Modes  
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10 Appendices 

10.1 Taylor Series Expansion of Phase Constant. 

The following variable related to the propagation of guided modes has many names: 

wavenumber, phase constant, propagation constant; and many symbols, most often 𝛽 or 

𝑘. 

 
𝛽(𝜔) =

2𝜋

𝜆(𝜔)
= 𝑛(𝜔)

𝜔

𝑐
  

(10.1) 

Mathematically it is often useful to approximate 𝛽(𝜔) as a Taylor series around some 

important central frequency 𝜔0. This approximation is often used in nonlinear optics. 

 

 
𝛽(𝜔) = 𝛽0 + 𝛽1(𝜔 − 𝜔0) +

1

2
𝛽2(𝜔 − 𝜔0)2 +

1

6
𝛽3(𝜔 − 𝜔0)3 + ⋯ 

(10.2) 

i.e. 

𝛽(𝜔) = ∑
𝛽𝑚

𝑚!
(𝜔 − 𝜔0)𝑚

𝑁

𝑚=0

 

(10.3) 

Each coefficient can be found by evaluating the 𝑚𝑡ℎ derivative at 𝜔0 

It is often helpful to calculate these coefficients in terms of the refractive index. 

 𝛽0 = 𝛽(𝜔0) = 𝑛(𝜔0)
𝜔0

𝑐
 

(10.5) 

 
𝛽1 =

1

𝑣𝑔
=

𝑛𝑔

𝑐
=

1

𝑐
(𝑛(𝜔) + 𝜔

𝑑𝑛(𝜔)

𝑑𝜔
)

𝜔=𝜔0

 
(10.6) 

 
𝛽2 =

1

𝑐
(2

𝑑𝑛(𝜔)

𝑑𝜔
+ 𝜔

𝑑2𝑛(𝜔)

𝑑𝜔2
)

𝜔=𝜔0

 
(10.7) 

 
𝛽𝑚 = (

𝑑𝑚𝛽

𝑑𝜔𝑚
)

𝜔=𝜔0

 
(10.4) 
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𝛽𝑚 =

1

𝑐
(𝑚

𝑑𝑚−1𝑛(𝜔)

𝑑𝜔𝑚−1
+ 𝜔

𝑑𝑚𝑛(𝜔)

𝑑𝜔𝑚
)

𝜔=𝜔0

 
(10.8) 

It should be noted that 𝛽0, 𝛽1 and 𝛽2 can also be related to the physical properties of 

phase velocity, group velocity and dispersion as discussed in section 1.1.3. 
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10.2 Radiometric Calibration 

To have a NIST standard radiometric calibration a certified NIST source is required. 

With this source it is possible to generate a radiometric calibration for the apparatus that 

is considered known. 

As the actual power measurement of the supercontinuum in this thesis was not critical it 

was not necessary to calibrate to such a source. Instead, a standard OSRAM 20W 

tungsten halogen lamp as shown in Figure 10.1 was used to generate the calibration of 

the mode field scanner in section 2.3.5. This is adequate as removing the response curve 

of the apparatus will provide the true relative spectrum of the broadband 

supercontinuum source. 

 

Figure 10.1: Spectral Irradiance of 20 W Quartz Tungsten Halogen lamp [56]. 

The spectrometers and bifurcated fibre from section 2.4 in accordance with the method 

detailed in the Newport Spectral Irradiance manual [56] and the equations detailed in 

section 2.5.1. This process was automated with a LabVIEW program written by the 

author and repeated as needed. This removed all detector spectral response from the 

measured data in this thesis. 
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10.3 Source Code for Programs 

Not all programs are included as most are too long to print. Please email the author at 

samuel.legge@gmail.com if you desire a copy or find them uploaded here: 

https://goo.gl/YSqfXa 

10.3.1 List of other programs written 

Robot PCF scan: 

LabVIEW program used to control the stepper motors and record the spectrometer data 

in the mode field scans. 

FemtoSolve: 

LabVIEW program used to display data from the laser spectrometer and autocorrelator. 

Beam Stabiliser: 

LabVIEW program used to control the beam steering system and feedback loop. 

Calibrated Spectrum: 

LabVIEW program used to record and test radiometric calibrations of spectrometer 

data. 

Integration Changer: 

LabVIEW program used to adjust the integration time of the spectrometers before each 

measurement. 

PCF Profiler: 

LabVIEW program used to observe the MOF profile through a scan of the piezo electric 

fibre launch stage. 

Mode Spectrum: 

Matlab program detailed in section 2.5.2. 
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10.3.2 Refraction of Fused Silica 

%Sellmeier equation 

B1 = 0.6961663; 

B2 = 0.4079426; 

B3 = 0.8974794; 

C1 = 0.0684043^2; 

C2 = 0.1162414^2; 

C3 = 9.896161^2; 

 

L=0.2:0.001:3.5;    %Wavelength in um 

n = (1+(B1.*L.^2)./(L.^2-C1)+(B2.*L.^2)./(L.^2-C2)+(B3.*L.^2)./(L.^2-

C3)).^0.5; %refractive Index 

L=200e-9:1e-9:3.5e-6;   %Wavelength in nm 

 

ng = n-L.*gradient(n,1e-9); %Group Index 

 

D=(-L.*gradient(gradient(n,1e-9),1e-9)./3e8).*1e6; %Dispersion 

%1e6 makes it in ps.nm-1.km-1 
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10.3.3 Self-Phase Modulation Simulation 

%Self Phase Modulation 

clear 

clc 

t=-300e-15:0.1e-15:300e-15;     % Time grid 

 

 

FWHM = 200e-15;                 %Pulse FWHM in Seconds 

Energy=1e-8;                    %Pulse Energy in Joules 

lambda=800e-9;                  %Wavelength in free space in meters 

 

L=0.1;                          %Fibre Length in meters 

r=5e-6;                         %Core radius in meters (assume top hat 

intensity) 

n=1.45;                         %Core Refractive index (silica) 

n2=6.16e-23;                    %nonliner parameter V^-2 (silica) 

 

c=FWHM/(2*log(2)^0.5);          %1/e^2 value 

P0=((2/pi)^0.5)*Energy/c;       %Peak Intensity in Watts 

w0=2*pi*(3e8/lambda);           %Angular frequency 

A=pi*r^2;                       %Core area 

 

P=P0*exp(-2*(t.^2./c^2));       %Gaussian Power profile in watts 

I=P/A;                          %Intensity profile in W.m^-2 

E=(2*I/(3e8*8.854E-12*n)).^0.5; %Electric Field envelope in Volts 

 

w=w0-2*pi/lambda*L*n2*gradient(E.^2,0.1e-15);%Instantaneous frequency 

shift 
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10.3.4 Quadrant Detection Simulation 

clear 

clc 

%Set parameters 

grid_dist=5e-3; %meters 

n=100; 

%FWHM=1235.9e-6; 

FWHM=1235.9e-6; 

sigma = FWHM/2.35482; 

r = 2.99e-3/2;        %quadrant radius (m) 

r2 = r^2; 

sep = 0.2e-3/2;       %diode seperation (m) 

step = grid_dist/n; 

 

%Build 2D Grid 

[X,Y] = ndgrid(-1:2/n:1,-1:2/n:1); 

X = X*grid_dist/2; 

Y = Y*grid_dist/2; 

 

X_OUT_M=[]; 

Y_OUT_M=[]; 

for m=-1e-3:1e-6:1e-3 

    %central point in meters 

    x0=m; 

    y0=0e-3; 

 

    %Create Guassian Function 

    G2 = 1.* exp(-(((X-x0).^2.+(Y-y0).^2)./(2*sigma^2))); 

    %Plot it if we want 

    

%Surf(X(:,1),Y(1,:),G2,'EdgeColor','none','LineStyle','none','FaceLigh

ting','phong');  %contour plot 

    %plot(X(:,1),G2(:,n/2+1));   % use to check 2d profile across 

center 

 

 

    %Now we do some quadrant calculations 

    Q1=0; 

    Q2=0; 

    Q3=0; 

    Q4=0; 

 

    %lets do this 

    for i=0:n 

        for j=0:n 

            x=(i-n/2)*step; 

            y=(j-n/2)*step; 

 

            if((x>sep)&&(y>sep)&&(x^2+y^3<r2)) 

                Q1 = Q1+ G2(i+1,j+1); 

            end 

 

            if((x<-sep)&&(y>sep)&&(x^2+y^3<r2)) 

                Q2 = Q2+ G2(i+1,j+1); 

            end 

 

            if((x<-sep)&&(y<-sep)&&(x^2+y^3<r2)) 

                Q3 = Q3+ G2(i+1,j+1); 

            end 
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            if((x>sep)&&(y<-sep)&&(x^2+y^3<r2)) 

                Q4 = Q4+ G2(i+1,j+1); 

            end 

 

        end 

    end 

 

    SUM=Q1+Q2+Q3+Q4; 

 

    X_OUT = ((Q1+Q4)-(Q2+Q3))/SUM; 

    Y_OUT = ((Q1+Q2)-(Q3+Q4))/SUM; 

     

    X_OUT_M=[X_OUT_M,X_OUT]; 

    Y_OUT_M=[Y_OUT_M,Y_OUT]; 

end 

 

plot(-1e-3:1e-6:1e-3,X_OUT_M); 
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